Archive

Year

Volume(Issue)

Issues

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Issue Info: 
  • Year: 

    2017
  • Volume: 

    30
  • Issue: 

    2
  • Pages: 

    95-104
Measures: 
  • Citations: 

    0
  • Views: 

    1441
  • Downloads: 

    0
Abstract: 

The presence of molecular iodine was studied in relation the molecular weight and molecular weight distribution of polystyrene, produced by radical poly merization. Radical polymerization of styrene initiated by azobisisobutyronitrile (AIBN) was performed at 70°C in the presence of -׳ 2, 2 molecular iodine. The synthesized polymers were characterized by gel permeation chromatography (GPC) and proton- nuclear magnetic resonance (1H NMR) techniques.The results of these reactions including conversion data, number-average molecular weight and molecular weight distribution were compared with those obtained for styrene radical polymerization initiated by AIBN at the same temperature in the absence of molecular iodine. It was found that the presence of iodine had a profound effect on the molecular weight and its distribution in the produced polystyrene. This was attributed to the ability of iodine to control the polymerization of styrene initiated by AIBN via reverse iodine transfer polymerization (RITP) mechanism. The polymer produced by this method had a molecular weight of 10600 g/mol with a molecular weight polydispersity index of 1.3. Due to the importance of induction period in reverse iodine transfer radical polymerization, increasing the temperature to 120°C during the induction period resulted in shorter induction periods and the produced species led to better control of the molecular weight. Also, due to the role of iodine molecules as a radical inhibitor, the presence of a secondary radical inhibitor, i.e.4-tert-butylcatechol, along with the iodine was investigated in radical polymerization of polystyrene initiated by AIBN. It was observed that the secondary radical inhibitor prevented the consumption of the iodine molecules by the radicals produced from decomposition of the AIBN initiator; therefore, alkyl halides were not produced during the induction period.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1441

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2017
  • Volume: 

    30
  • Issue: 

    2
  • Pages: 

    105-114
Measures: 
  • Citations: 

    0
  • Views: 

    1085
  • Downloads: 

    0
Abstract: 

Epoxy resin has remarkable properties including excellent mechanical and electrical properties, thermal and chemical stability, and resistance to creep. On the other side, these resins are brittle with low resistance toward crack initiation and its growth. In order to solve this problem, thermoplastic polysulfone and graphene nanosheets have been used as filler for improving the flexibility of epoxy coatings.The effect of adding different amounts (1, 0.5, 2.5, 5 wt%) of polysulfone and 0.5 wt% of graphene nanosheets on the epoxy properties was investigated by thermal analysis (DSC), tensile strength, impact resistance and determining the gel content of samples. The results showed that the tensile strength of epoxy resin increased by adding polysulfone, and the graphene nanosheets could improve flexibility of the sample containing 1 wt% polysulfone. The study of thermal properties of cured samples by means of DSC analysis showed that the addition of polysulfone into the epoxy network resulted in changing the glass transition (Tg) of the resin. With incorporation of graphene nanosheets into the polymer matrix, the modulus decreased due to the reduction in number of crosslinks. The study in impact resistance of the samples showed that those containing 1 wt% polysulfone and 0.5 wt% graphene displayed high strength and impact resistance. These types of compounds can be used in flexible and anticorrosion coatings.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1085

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2017
  • Volume: 

    30
  • Issue: 

    2
  • Pages: 

    115-126
Measures: 
  • Citations: 

    0
  • Views: 

    863
  • Downloads: 

    0
Abstract: 

Nowadays, making use of additive manufacturing (AM) processes such as fused deposition modeling (FDM), in different areas, such as car manufacturing, biomedical and aerospace industries is gaining popularity worldwide because of their capacities in producing functional parts with complex geometries. Therefore, it is very important to identify the significance of FDM processing parameters which would have an impact on the quality of articles produced by the processing system. In this work, poly (lactic acid) was used to study the effects of processing parameters such as layer thickness, raster angle and printing plane on the tensile properties and surface roughness of the printed specimens. The results showed that the tensile strength of a specimen increased by reducing its layer thickness. However, the elastic modulus values increased with decreasing the layer thickness to some extent. Moreover, when the layer thickness was kept constant at 0.05 mm and 3D-printing was carried out in XYZ plane, the maximum modulus and tensile strength were obtained for the raster angle of 0˚. Microscopic studies showed that in low layer thickness, the polymeric layers diffused properly into each other and no voids were formed between the layers.However, with a thickness above its critical value, a few voids were formed between the layers which played as a stress concentrator and decreased the tensile strength of the specimens. The results also showed that the surface roughness increased with increasing the layer thickness.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 863

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2017
  • Volume: 

    30
  • Issue: 

    2
  • Pages: 

    127-137
Measures: 
  • Citations: 

    0
  • Views: 

    629
  • Downloads: 

    0
Abstract: 

Nanocomposites based on an SBR/ENR50 rubber blend with the blend ratio of 50.50 using Cloisite 15A nanoclay (5 and 10 phr)) and carbon black (20 phr) were prepared by melt mixing process. The rubber compounds were crosslinked by electron beam irradiation process at 50 and 100 kGy doses. A reference sample containing carbon black at 35 phr was prepared using a conventional sulphur curing system. The gel content of the samples was specified using gel fraction measurement. The results showed the maximum gel content for the sample having 5 phr nanoclay and 20 phr carbon black. The dynamic mechanical properties, including the storage modulus, loss modulus, and loss factor, of the nanocomposites were evaluated using dynamic mechanical analysis (DMA) tests. The results indicated that, in spite of a well dispersed nanoclay in samples containing 10 phr nanoclay and 20 phr carbon black, a minimum loss factor was observed in the sample containing 5 phr nanoclay and 20 phr carbon black at 100 kGy. On the other hand, the storage modulus of the reference sample was found to be higher than that of the sample with 5 phr nanoclay and 20 phr carbon black. The mechanical properties, including the tensile strength, stress at 100%, 200%, and 300% elongation and the percentage of elongation were measured by a tensile machine. The results showed an increase in tensile strength and the stress at different elongations for a sample with 5 phr nanoclay and 20 phr carbon black compared to the reference sample. In the corresponding SEM images of the samples having nanoclay and carbon black irradiated at 100 kGy a significantly higher surface roughness was observed.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 629

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2017
  • Volume: 

    30
  • Issue: 

    2
  • Pages: 

    139-149
Measures: 
  • Citations: 

    0
  • Views: 

    873
  • Downloads: 

    0
Abstract: 

This research work is devoted to the study of the thermal diffusivity of SBR/BR compounds used as the tread of radial tires. Three series of rubber compounds were prepared, in which two solution SBR grades (with and without extra oil) as well as an emulsion SBR were selected. Five compounds with different CB/ silica ratios were designed for each of the three series. Moreover, three compounds without fillers were prepared as reference samples. Thermal diffusivities of the compounds were determined by a novel technique to solve an inverse heat transfer problem. Abaqus and Isight codes were used to carry out the finite element solution and optimization. It is shown that, in all the compounds the thermal diffusivities were reduced with increasing the temperature. In addition, the macro- and microstructures of SBR as well as the CB/silica ratios greatly affected the variations in thermal diffusivities with temperature. The thermal diffusivity and its variabilities were studied and discussed by different structural and functional parameters such as intermolecular distance, molecular vibrational energy, difference between the thermal diffusivities of the polymer and filler, and the chemical bonds between the polymer and silica.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 873

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2017
  • Volume: 

    30
  • Issue: 

    2
  • Pages: 

    151-161
Measures: 
  • Citations: 

    0
  • Views: 

    761
  • Downloads: 

    0
Abstract: 

Effect of colloidal nanosilica (SiO2) on the mechanical, thermal and rheological properties of poly (vinyl acetate) synthesized by in situ emulsion polymerization method was investigated. For this purpose, a poly (vinyl acetate) latex containing 1.5 wt% colloidal silica nanoparticles was produced and the results were compared with of a blank sample. The effect of nanoparticles on the shear strength of a blank and modified poly (vinyl acetate) was characterized by tensile test. The effect of nanoparticles on glass transition temperature (Tg), thermal stability and char yield of pristine poly (vinyl acetate) and its nanocomposite was evaluated by differential scanning calorimetric (DSC) and thermogravimetric analysis (TGA), respectively.The rheological behavior of the products was studied by rheometric mechanical spectrometry (RMS). Eventually, field emission scanning electron microscopy (FE-SEM) coupled with elemental mapping of X-ray spectroscopy (EDX) was used to study the morphology and elemental analysis of the nanocomposite. The results showed that the shear strength was improved by 11% with increasing 1.5 wt% colloidal silica nanoparticles into poly (vinyl acetate). Besides, with the addition of silica nanoparticles, Tg increased approximately 1°C due to creating more free volume between the polymer chains. The TGA results showed that the nanocomposite char yield increased by 3.8% at 800°C in comparison with the blank polymer char yield, suggesting a thermal stability improvement in the presence of colloidal silica nanoparticles as a result of molecular interactions. The results of RMS revealed the shear thinning behavior of the latexes. The FE-SEM-EDX results showed a uniform dispersion of nanoparticles throughout the poly (vinyl acetate) matrix.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 761

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2017
  • Volume: 

    30
  • Issue: 

    2
  • Pages: 

    163-176
Measures: 
  • Citations: 

    0
  • Views: 

    1131
  • Downloads: 

    0
Abstract: 

In recent years, much attention has been paid to aerogel materials (especially carbon aerogels) due to their potential uses in energy-related applications, such as thermal energy storage and thermal protection systems. These open cell carbon-based porous materials (carbon aerogels) can strongly react with oxygen at relatively low temperatures (~ 400°C). Therefore, it is necessary to evaluate the thermal performance of carbon aerogels in view of their energy-related applications at high temperatures and under thermal oxidation conditions. The objective of this paper is to study theoretically and experimentally the oxidation reaction kinetics of carbon aerogel using the non-parametric kinetic (NPK) as a powerful method. For this purpose, a non-isothermal thermogravimetric analysis, at three different heating rates, was performed on three samples each with its specific pore structure, density and specific surface area. The most significant feature of this method, in comparison with the model-free isoconversional methods, is its ability to separate the functionality of the reaction rate with the degree of conversion and temperature by the direct use of thermogravimetric data. Using this method, it was observed that the Nomen-Sempere model could provide the best fit to the data, while the temperature dependence of the rate constant was best explained by a Vogel-Fulcher relationship, where the reference temperature was the onset temperature of oxidation. Moreover, it was found from the results of this work that the assumption of the Arrhenius relation for the temperature dependence of the rate constant led to over-estimation of the apparent activation energy (up to 160 kJ/mol) that was considerably different from the values (up to 3.5 kJ/mol) predicted by the Vogel-Fulcher relationship in isoconversional methods.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1131

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button