مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

مقاله مقاله نشریه

مشخصات مقاله

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

113
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

499
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

1

اطلاعات مقاله نشریه

عنوان

تعیین عوامل تاثیرگذار در آموزش مهندسی و پیش بینی افزایش سنوات تحصیلی با رویکرد تصمیم گیری چند معیاره و داده کاوی (شبکه عصبی مصنوعی)

صفحات

 صفحه شروع 51 | صفحه پایان 66

چکیده

 با توجه به نقش دانشگاه ها در آموزش مهندسی, بررسی وضعیت نظام آموزشی و نقاط قوت و ضعف آن به منظور بهبود فرآیند آموزش مهندسی ضرورت دارد. در این تحقیق عوامل موثر بر افزایش سنوات تحصیلی دانشجویان رشته های مهندسی و وضعیت دانشجویانی که در سنوات مجاز, تحصیل خودرا به اتمام نمی رسانند, بررسی شده است. در ابتدا شاخص های تاثیرگذار بر افزایش سنوات تحصیلی دانشجویان مهندسی شناسایی و با استفاده از فن AHP اولویت بندی شد. نتایج رتبه بندی نشان داد معدل دروس پایه, معدل دروس اصلی, معدل دروس عمومی, تعداد نیمسال های مشروطی, معدل دروس اختیاری و تعداد واحد افتاده از نظر خبرگان بیشترین تاثیر را بر افزایش سنوات تحصیلی دانشجویان مهندسی دارند. سپس به ارایه الگویی برای پیش بینی افزایش سنوات تحصیلی با توجه به وضعیت تحصیلی دانشجویان رشته های مهندسی با استفاده از شبکه عصبی مصنوعی پرداخته شد. براساس نتایج شبکه عصبی عوامل تعداد واحد های افتاده, معدل دروس اصلی, معدل دروس پایه, تعداد نیمسال های مشروطی, مدت تاهل و میانگین معدل دروس ریاضی و فیزیک دبیرستان بیشترین اثرگذاری را بر افزایش سنوات تحصیلی دارند. در نهایت با مقایسه نتایج حاصل از روش AHP و شبکه عصبی, عامل های معدل دروس پایه و اصلی, تعداد نیمسال های مشروطی و تعداد واحدهای افتاده در هر دو روش عوامل با تاثیرگذاری بیشتر شناخته شدند که در حین تحصیل دانشجویان رشته های مهندسی باید توجه بیشتری به آنها شود.

چندرسانه ای

  • ثبت نشده است.
  • استنادها

    ارجاعات

  • ثبت نشده است.
  • استناددهی

    APA: کپی

    شهرکی، محمدرضا، و حقانی، فاطمه. (1401). تعیین عوامل تاثیرگذار در آموزش مهندسی و پیش بینی افزایش سنوات تحصیلی با رویکرد تصمیم گیری چند معیاره و داده کاوی (شبکه عصبی مصنوعی). آموزش مهندسی ایران، 24(93 )، 51-66. SID. https://sid.ir/paper/1004701/fa

    Vancouver: کپی

    شهرکی محمدرضا، حقانی فاطمه. تعیین عوامل تاثیرگذار در آموزش مهندسی و پیش بینی افزایش سنوات تحصیلی با رویکرد تصمیم گیری چند معیاره و داده کاوی (شبکه عصبی مصنوعی). آموزش مهندسی ایران[Internet]. 1401؛24(93 ):51-66. Available from: https://sid.ir/paper/1004701/fa

    IEEE: کپی

    محمدرضا شهرکی، و فاطمه حقانی، “تعیین عوامل تاثیرگذار در آموزش مهندسی و پیش بینی افزایش سنوات تحصیلی با رویکرد تصمیم گیری چند معیاره و داده کاوی (شبکه عصبی مصنوعی)،” آموزش مهندسی ایران، vol. 24، no. 93 ، pp. 51–66، 1401، [Online]. Available: https://sid.ir/paper/1004701/fa

    مقالات مرتبط نشریه ای

  • ثبت نشده است.
  • مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button