مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

899
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

SONOCHEMICAL OXIDATION OF ACID BLUE 113 BY FE (II) -ACTIVATED HYDROGEN PEROXIDE AND PERSULFATE IN AQUEOUS ENVIRONMENTS

Pages

  2-13

Abstract

 Residual Azo dyes pose a major environment problem due to the benzene rings present in their structure. In this experimental study, the efficiencies of the US/H2O2/Fe2+ and US/S2O82-/Fe2+ processes in degrading ACID BLUE 113 Azo were investigated. For this purpose, the effects of the parameters involved in these processes such as initial solution pH in the range of 3 to 11, different concentrations of H2O2, and -S2O82 in the range of 1 to 10 mM, those of FeSO4 in the range of 0.1 to 1 mM, and different initial dye concenterations were investigated in a batch ultrasound reactor operated at 40 kHz. Also, the effects of aeration on process efficiency and fluctuations in the dye UV-Vis spectrum were investigated under optimum conditions. Based on the results obtained, dye removal efficiency decreased considerably in both processes with increasing pH such that maximum removal efficiency was obtained at pH 3 in both processes. Similarly dye removal efficiency decreased in both processes when FeSO4 concentration rose above 0.5 mM. The optimum conditions in the US/H2O2/Fe2+ process to achieve a removal efficiency of 93.5% for an initial dye concentration of 50 mg/L involved H2O2 and FeSO4 concentrations of 2.5 and 0.05 mM, respectively. Under the same optimal conditions, the efficiency of the US/S2O82-/Fe2+ process was found to be 94.3% for a S2O82- concentration of 2.5 nM. These results suggest that the US/S2 O82-/Fe2+ is more effective than the US/H2O2/Fe2+ in reducing the 567 nm peak of the dye structure.Finally, examination of the changes in the UV-Vis spectra of ACID BLUE 113 showed that the US/H2O2/Fe2+ process led to greater declines in the 276 and 203 nm peaks.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    SEID MOHAMMADI, A., ASGARI, GH., MEHRALIPOUR, J., SHABANLO, A., ALMASI, H., & ZAHERI, F.. (2016). SONOCHEMICAL OXIDATION OF ACID BLUE 113 BY FE (II) -ACTIVATED HYDROGEN PEROXIDE AND PERSULFATE IN AQUEOUS ENVIRONMENTS. WATER AND WASTEWATER, 27(2 (102)), 2-13. SID. https://sid.ir/paper/103833/en

    Vancouver: Copy

    SEID MOHAMMADI A., ASGARI GH., MEHRALIPOUR J., SHABANLO A., ALMASI H., ZAHERI F.. SONOCHEMICAL OXIDATION OF ACID BLUE 113 BY FE (II) -ACTIVATED HYDROGEN PEROXIDE AND PERSULFATE IN AQUEOUS ENVIRONMENTS. WATER AND WASTEWATER[Internet]. 2016;27(2 (102)):2-13. Available from: https://sid.ir/paper/103833/en

    IEEE: Copy

    A. SEID MOHAMMADI, GH. ASGARI, J. MEHRALIPOUR, A. SHABANLO, H. ALMASI, and F. ZAHERI, “SONOCHEMICAL OXIDATION OF ACID BLUE 113 BY FE (II) -ACTIVATED HYDROGEN PEROXIDE AND PERSULFATE IN AQUEOUS ENVIRONMENTS,” WATER AND WASTEWATER, vol. 27, no. 2 (102), pp. 2–13, 2016, [Online]. Available: https://sid.ir/paper/103833/en

    Related Journal Papers

    Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button