مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

26
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

6
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Active Vibration Control of Laminated Composite Beam Operating in Thermal Environment using PZT-5H Patches

Pages

  387-398

Abstract

 This paper investigates the influence of temperature on the Active vibration control of laminated composite cantilever beams using collocative experimental and simulation techniques. The system identification toolbox of the MATLAB simulation tool is utilized to obtain the transfer function of the plant model. The adequate vibration attenuation of the glass-epoxy cantilever beam operating in various thermal environments is achieved using the proportional (P) and proportional-integral-derivative (PID) controllers. The vibration attenuation characteristics of the developed control algorithms are comprehensively investigated for a wide temperature range of –20 °C to 60 °C using PZT-5H patches. Particular emphasis is given to the vibration control of the fundamental natural frequency of the laminated composite cantilever beam. The obtained results of open and closed-loop models are presented in both time and frequency domains. The results indicate that for all the temperatures considered, the PID Controller is found to be more effective in vibration attenuation than the P controller. The vibration attenuation performance of the cantilever beam considerably improved at the higher magnitude of temperature values. The natural frequency of the system is reduced continuously with an increase in temperature.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button