مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

56
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Microstructural study of Ti/3YSZ interface in NI 105/Ni/Nb/Ti/3YSZ diffusion bonding

Pages

  59-66

Abstract

 In this research, the Diffusion bonding of the stabilized zirconia ceramic and Nimonic 105 superalloy using Ti/Nb/Ni multi-interlayer was carried out. Joint was performed using the plasma spark technique in a vacuum atmosphere and at different temperatures and times. The microstructure of the different joint zones was studied using optical and FESEM microscopes equipped with an EDS analyzer. The results showed that the critical region is Ti/3YSZ interface and in all conditions Diffusion bonding in Ti/Nb, Nb/Ni, and Ni/NI 105 interfaces were done. Microstructural observations showed that in the Ti/3YSZ interface at all temperature and time conditions, the connection of two separate regions including Ti3O and (Zr, Ti)2O was formed due to the difference in the diffusion depth of Ti, Zr, and O elements and with increasing temperature and time, the thickness of these regions increased. Microstructural studies showed that the bond at 900 ℃ and 30 minutes did not have any cracks and discontinuities and due to the better diffusion of atoms, a suitable reaction layer was formed. Microhardness observations and EDS analyses confirmed that the Ti3O reaction layer is the weakest zine.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button