مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

15
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

11
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Minimum Stiffness and Optimal Position of an Intermediate Elastic Support to Maximize the Fundamental Frequency of a Vibrating Timoshenko Beam using Finite Element Method and Multi-Objective Genetic Algorithm

Pages

  13-23

Keywords

Multi-Objective Genetic Algorithm (GA)Q4

Abstract

 This paper explores the Optimal Position and Minimum Stiffness of two Intermediate Supports to maximize the fundamental natural frequency of a vibrating cantilever Timoshenko Beam with tip mass using Finite Element Method (FEM) and a multi-objective genetic algorithm (GA). After validating the results by comparison to previous works, the effects of the mass ratio and the position and stiffness of intermediate elastic support on the fundamental frequency are investigated. The numerical results demonstrated that as mass ratio increases, the optimal position moves toward the tip mass, and minimum stiffness increases. In many practical applications, it is not possible to place Intermediate Support in the optimal position, therefore, the minimum stiffness does not exist. In order to overcome this issue, a tolerance zone is considered, and design curves are proposed. The simultaneous optimization of the first and second natural frequencies of the beam with two Intermediate Supports was carried out using the genetic algorithm (GA) and the multi-objective GA. It was found that the optimization of the first and second natural frequencies did not require the two supports to have the same and high stiffness. The stiffness and optimal positions of the two supports differ at different mass ratios. Moreover, to optimize the first natural frequency, the second support should be stiffer, while the optimization of the second natural frequency requires the higher stiffness of the first support.

Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button