مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

29
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Improved Object Matching in Multi-objects Tracking Based On Zernike Moments and Combination of Multiple Similarity Metrics

Pages

  1445-1454

Abstract

 In video surveillance, multiple objects tracking (MOT) is a challenging task due to object matching problem in consecutive frames. The present paper aims to propose an improved object matching approach in MOT based on Zernike Moments and combination of multiple similarity distance metrics. In this work, the object is primarily detected using background subtraction method while the Gaussian Mixture Model (GMM) is applied for object extraction in the next frames. Subsequently, the color histogram and the magnitude of Zernike Moments of the objects are calculated. In the next step, the objects are matched in the current and the previous frames based on the Hausdorff distance between objects, Earth Mover's (EMD) distance between their color histograms, and Chi-square distance between their Zernike Moments. Then, a voting mechanism is designed to find the best consensus object matching from the aforementioned metrics. Eventually, the location of each object is predicted by the Kalman filter to continue tracking in subsequent frames. The results show that the object tracking and matching performance is improved using the proposed method in the video sequences of the multi-camera pedestrian "EPFL" video dataset. Specifically, errors caused by the merging of targets are reduced in the proposed tracking process.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button