مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

63
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Evaluating the Performance of a Machine Learning Classifier System for the Identification of Heart Disease Patients

Author(s)

 Dehghani Mahmoudabadi Mohammadreza | Issue Writer Certificate 

Pages

  19-29

Abstract

 Background and Objectives: Cardiovascular Diseases have been identified as one of the most prevalent global health issues, and delays in treatment can lead to increased mortality among patients. The primary objective of this study has been to enhance the identification of heart disease patients using a machine learning classification system. Methods: In this research, machine learning classification systems with Rule-Based Learning techniques have been employed. These techniques are built upon two fundamental principles, reinforcement learning, and genetic algorithms. The Mishgan style has been selected as the optimization method, and a dataset of heart disease patients from the Afshar Research Center has been utilized for the training and learning of the system. Findings: Following the training of the system, a set of valuable rules has been generated and utilized in the testing phase for predicting heart disease patients. The experimental results indicate that using the Mishgan-style machine learning classification system has improved the identification of heart disease patients, resulting in an 88% increase in prediction accuracy. In other words, this approach enables a more comprehensive identification of heart disease patients. Conclusion Considering the study's outcomes, the use of the Mishgan-style machine learning classification system as an optimal approach has enhanced the identification of heart disease patients and increased prediction accuracy. This method can contribute significantly to timely treatment of heart disease patients and the reduction of morbidity and mortality associated with these diseases.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button