مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

62
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

18
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Design and Multi-Objective Optimization of A Magnetohydrodynamic Drug Delivery Infusion Micropump

Pages

  5221-5238

Abstract

 Continuous Drug infusion plays an important role in drug effectiveness. However, in most cases, the size, weight, and power consumption of conventional pumps are among the most important factors that cause a lot of problems for patient comfort. The present work aims to design and optimize a Magnetohydrodynamic micropump for continuous Drug infusion. A mathematical model of Magnetohydrodynamic micro pump is proposed and solved analytically to investigate its feasibility for Drug infusion. For the patient's comfort, the micropump is optimized using non-dominated sorting genetic algorithm II. The number of channel rows and columns, channel height and width, and driving voltage are chosen as decision variables for Multi-objective optimization. The Pareto front of the optimization result is presented. Six possible cases that meet the desired specifications are selected using a fuzzy decision-making approach. A computational fluid dynamic model is adopted to predict bubble formation due to the electrolysis phenomena. With higher reliability without any mechanical part, the present design can deliver drug flow 48 times while its driving voltage is 3 times lower than a conventional micro pump. In addition, it provides potentially better reliability and a simple fabrication process without any mechanical parts.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button