مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

68
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

21
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Aeolian Sand Stabilization using Metakaolin and Calcium Carbide Residue as an Alkaline Activator

Pages

  1579-1600

Abstract

 Stabilizing weak and poorly graded soils in engineering projects is commonly achieved using lime and cement. However, the cement production process requires significant energy and generates a substantial volume of carbon dioxide, which presents considerable environmental risks. As an alternative to cement and lime, alkali-activated aluminosilicates have gained recognition due to their cost-effectiveness and environmental compatibility. This study aims to investigate the feasibility of utilizing Metakaolin as a stabilizing agent for sandy soil, with Calcium carbide residue (CCR) serving as an alkaline activator. To this end, factors such as the concentration of alkaline activator, Metakaolin content, curing time, and temperature of treated soil samples were examined through unconfined compressive strength (UCS) and California Bearing Ratio (CBR) tests. The results were then compared to those of sand stabilized with Portland cement. Furthermore, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were used to analyze the microstructures formed during the Soil Stabilization process. The findings indicate a significant increase in the stabilized soil samples' compressive strength and ductile behavior. Moreover, the analysis of the developed microstructures in the stabilized soil samples demonstrates a noticeable bond between the binding gel and sand particles and the filling of intergranular space with alkali-activated binding gel. Overall, the findings of the present study suggest that the introduced binding gel has the potential to be an environmentally compatible stabilizing agent for stabilizing sandy soils.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button