مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

82
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Ranking Improvement Using BERT

Pages

  21-29

Abstract

 In today's information age, efficient document ranking plays a crucial role in information retrieval systems. This article proposes a new approach to document ranking using embedding models, with a focus on the BERT language model to improve ranking results. The proposed approach uses vocabulary embedding methods to represent the semantic representations of user queries and document content. By converting textual data into semantic vectors, the relationships and similarities between queries and documents are evaluated under the proposed ranking relationships with lower cost. The proposed ranking relationships consider various factors to improve accuracy, including vocabulary embedding vectors, keyword location, and the impact of valuable words on ranking based on semantic vectors. Comparative experiments and analyses were conducted to evaluate the effectiveness of the proposed relationships. The empirical results demonstrate the effectiveness of the proposed approach in achieving higher accuracy compared to common ranking methods. These results indicate that the use of embedding models and their combination in proposed ranking relationships significantly improves ranking accuracy up to 0. 87 in the best case. This study helps improve document ranking and demonstrates the potential of the BERT embedding model in improving ranking performance.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button