مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

مقاله مقاله نشریه

مشخصات مقاله

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

63
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

11
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

بهینه سازی نتایج الگوریتم ML-Based GMDH به منظور افزایش دقت تشخیص گردوغبار و عمق دید افقی ازطریق الگوریتم TLBO

صفحات

 صفحه شروع 49 | صفحه پایان 66

چکیده

 سابقه و اهداف: کیفیت هوای پاک, به منزلة یکی از ضروری‏ترین نیازهای موجودات زنده, براَثر فعالیت‏های طبیعی و انسانی به مخاطره افتاده است. در سال های اخیر, طوفان های گردوغبار ازلحاظ مکانی و زمانی همواره درحال افزیش بوده و سبب آسیب های بی شمار درحوزة سلامت اجتماعی, اقتصادی و زیست محیطی, برای ساکنان مناطق جنوب و جنوب‏غرب ایران, شده است. در پژوهش حاضر, به منظور بررسی طوفان های گردوغبار و تشخیص عمق دید افقی, داده‏های سنجندة مادیس به کار رفته است. مواد و روش ها: از مزایای داده‏های سنجندة مادیس می‏توان به توان تفکیک طیفی و زمانی بالا اشاره کرد. همچنین داده‏های ایستگاه های هواشناسی با توجه به بازة زمانی مورد مطالعه جمع آوری شده است. پس از پیش‏پردازش داده‏ها و آماده سازی مشاهدات میدانی, به منظور استخراج ویژگی‏های مورد نیاز برای انجام دادن مدل‎سازی‎ها, ازطریق روش تفاضلی بین باندهای منتخب هر تصویر داده‏های سنجندة مادیس, به همراه ویژگی های استخراج شده از سنسورهای ایستگاه های هواشناسی زمینی استفاده شده است. با بررسی های بیشتر و ارزیابی های صورت گرفته و استفاده از دیدگاه های خبرگان هواشناسی, 36 ویژگی تفاضلی از باندهای گوناگون تصاویر مادیس و شش ویژگی از داده های ایستگاه های هواشناسی زمینی, یعنی درمجموع 42 ویژگی, استخراج شده است. در ادامه, ازطریق تکنیک های انتخاب ویژگی, بهترین ویژگی ها شناسایی و با به کارگیری روشی جدید با نام ML-Based GMDH, که حاصل بهبود شبکة عصبی GMDH ازطریق تغییر توابع جزئی با مدل های یادگیری ماشین است, برای تشخیص غلظت گردوغبار و دید افقی استفاده شد. برای دستیابی به دقت مناسب نیز ابرپارامترهای این مدل به صورت ابتکاری, با استفاده از الگوریتم بهینه سازی TLBO, تنظیم شدند. در ادامه, روش های یادگیری ماشین Basic GMDH SVM, MLP, MLR, RF و مدل گروهی آنها نیز, برای مقایسه با رویکرد اصلی, اجرایی شد؛ طبق نتایج, روش ML-Based GMDH تنظیم شده با  TLBOبا ایجاد بهبود درقیاس با روش‏های یادگیری ماشین ذکرشده, دقت بهتری را در تشخیص غلظت گردوغبار فراهم کرده است. نتایج و بحث: روش SVM-PSO به منزلة روش برتر در مرحلة انتخاب ویژگی, روش RF به منزلة روش برتر در میان روش‎های پایة دسته بندی و روش‎های Ensemble SVM و Ensemble RF به منزلة روش‎های برتر در مرحلة گروهی و دسته بندی انتخاب شدند. همچنین مشاهده شد, با استفاده از رویکرد گروهی, بهبود مطلوبی در تشخیص دستة دید افقی پدید آمد. در رویکرد دوم, روشی با عنوان ML-Based GMDH که حاصل بهبود شبکة عصبی GMDH ازطریق تغییر توابع جزئی با مدل های یادگیری ماشین است, استفاده شد که کاربرد آن در تقریب غلظت گردوغبار است. همچنین, برای دستیابی به دقت مناسب, ابرپارامترهای این مدل با الگوریتم بهینه سازی TLBO با دقت بسیار بالا تنظیم شدند. نتایج حاصل نشان دادند این روش, با ایجاد بهبود درمقایسه با بهترین روش‏های انتخابی از رویکرد اول, دقت مناسبی را در تقریب غلظت گردوغبار و عمق دید افقی فراهم کرده است.

چندرسانه ای

  • ثبت نشده است.
  • استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    مقالات مرتبط نشریه ای

  • ثبت نشده است.
  • مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button