مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

18
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Experimental Study of the Effects of the Ultrasonic Peening Treatment on Surface Hardness and Hardness Depth of Wire EDMed Workpieces

Pages

  44-61

Keywords

Wire Electric Discharge Machining (WEDM) 
Ultrasonic Peening Treatment (UPT) 
Mo40 alloy steel (DIN 1.7225) 

Abstract

 Wire EDM is a modern machining process that uses electrical discharge to cut workpieces. High temperatures generated by wire EDM can cause surface cracking due to metallurgical changes. A new approach is to use the ultrasonic peening treatment to cause surface severe plastic deformation to improve the mechanical properties, especially the hardness. In this study, the focus was on exploring the impact of cutting types in wire EDM, feeding rate, and the number of peening passes as input parameters on Mo40 (1.7225) alloy steel. The experiments were designed using the multilevel factorial design method. The average hardness values were then analyzed based on the input parameters. The maximum hardness value was determined through optimization using the multilevel factorial design method. Analysis of variance was used to evaluate the impact of parameters on hardness. The highest hardness value of 952.7 (HV) was obtained with a feeding rate of 0.12 (mm/rev) and 3 peening passes in roughing mode, leading to a 48% increase in hardness. A mathematical model with 99.87% desirability was developed to study the correlation between input parameters and response variables. The hardness distribution in the peened workpieces continued up to 200 µm below the surface layers. The highest hardness was found at a feeding rate of 0.12 (mm/rev), which influences the time needed to alter dislocation density and form a new sublayer structure. Overall, increasing the feeding rate decreases hardness, while increasing peening passes increases it. According to a single-objective optimization, the cutting types, feeding rate, and number of peening passes respectively affect hardness value.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button