مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

26
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

2
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Torque Improvement of a Dual Rotor Coreless Axial Flux-Switching Generator for High Speed Wind Turbine

Pages

  49-54

Abstract

 Coreless axial flux permanent magnet (PM) machines (AFPM) have attracted significant interest over the last decades as an ideal candidate for a wide range of applications. This is generally due to their advantages, such as the high torque density, high power density, and the light weight. This paper investigates the performance of a coreless axial flux-switching generator (AFSMG) with improved torque characteristics. The inherent feature of the axial flux-switching machines is the high cogging torque. Hence the main advantage and the novelty of this research is addressing a suitable key for its torque characteristics challenges. In this regard, a comprehensive study is done on rotor tooth shape. First, the geometry and the shape of the rotor tooth are optimized, and then the skewing technique is applied to minimize the cogging torque and improve the total harmonic distortion. Finally, the cogging torque and the THD are calculated in the primary design and the optimal design. The Taguchi method is utilized to improve the primary model. A comparative analysis of the primary and optimized model is carried out, which indicates the better performance of the optimized design. Furthermore, the 3D finite element method is applied to verify the results of the presented model.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button