مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

4
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Multishape Morphological-based Two-Stage CNN for LiDAR-DSM Classification

Pages

  157-162

Keywords

Digital surface model (DSM)Q4

Abstract

 The classification of Digital Surface Model (DSM) images derived from LiDAR sensors is a challenging task, particularly when distinct ground classes with identical height information must be distinguished. However, DSM images contain valuable spatial information that can be utilized to enhance classification accuracy. This paper proposes a novel strategy, called Multishape Morphological Two-Stage Convolutional Neural Network (MM2CNN), for DSM classification to achieve accurate classified land-cover maps. The proposed method combines the strengths of multishape Morphological Profiles (MMPs) and a two-stage CNN model as a Smart algorithm to effectively discriminate between different land covers from a single-band DSM image. More precisely, the CNN, as a smart method, is used to learn hierarchical rich representations of the data, while the MMPs are used to extract spatial information from the DSM imagery. The approach involves generating MMPs with three structuring elements, training three parallel CNN models, and then stacking and feeding the probability maps to a second-stage CNN to predict the final pixel labels. Experimental results on the Trento benchmark DSM image show that the suggested technique achieves an overall accuracy of 97.32% in a reasonable time, outperforming some other DSM classification methods. The success of the MM2CNN technique demonstrates the potential of integrating MMPs with CNN for precise DSM classification, which has a wide range of applications in environmental investigations.

Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button