مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

12
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Efficient Tactile Perception in Robotics: Reducing Data Redundancy through Compression and Normalization in Spiking Graph Convolutional Networks

Pages

  3445-3445

Abstract

 Touch, one of the fundamental human senses, is essential for understanding the environment by enabling object identification and stable movements. This ability has inspired significant advancements in artificial neural networks for object recognition, texture identification, and slip detection applications. However, despite their remarkable capacity to simulate Tactile Perception, artificial neural networks consume considerable energy, limiting their broader adoption. Recent developments in electronic skin technology have brought robots closer to achieving human-like Tactile Perception by enabling asynchronous responses to temperature and pressure changes, thereby enhancing robotic precision in tasks like object manipulation and grasping. This research presents a Spiking Graph Convolutional Network (SGCN) designed for processing tactile data in object recognition tasks. The model addresses the redundancy in spiking-format input data by employing two key techniques: (1) data compression to reduce the input size and (2) Batch Normalization.to standardize the data. Experimental results demonstrated a 93.75% accuracy on the EvTouch-Objects dataset, reflecting a 4.31% improvement, and a 78.33% accuracy on the EvTouch-Containers dataset, representing an 18% improvement. These results underscore the SGCN's effectiveness in reducing data redundancy, decreasing required time steps, and optimizing tactile data processing to enhance robotic performance in object recognition.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button