مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

1,282
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

180
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

EVALUATING THE EFFECTS OF PARAMETERS SETTING ON THE PERFORMANCE OF GENETIC ALGORITHM USING REGRESSION MODELING AND STATISTICAL ANALYSIS

Pages

  61-68

Abstract

 Among various heuristics techniques, GENETIC ALGORITHM (GA) is one of the most widely used techniques which has successfully been applied on a variety of complex combinatorial problems. The performance of GA largely depends on the proper selection of its parameters values; including crossover mechanism, probability of crossover, population size and mutation rate and selection percent. In this paper, based on DESIGN OF EXPERIMENTS (DOE) approach and REGRESSION MODELING, the effects of tuning parameters on the performance of GENETIC ALGORITHM have been evaluated. As an example, GA is applied to find a shortest distance for a well-known travelling salesman problem with 48 cities. The proposed approach can readily be implemented to any other OPTIMIZATION problem. To develop mathematical models, computational experiments have been carried out using a 4-factor 5-level Central Composite Design (CCD) matrix. Three types of regression functions models have been fitted to relate GA variables to its performance characteristic. Then, statistical analyses are performed to determine the best and most fitted model. Analysis of Variance (ANOVA) results indicate that the second order function is the best model that can properly represent the relationship between GA important variables and its performance measure (solution quality).

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    HASANI DOUGHABADI, MARZIYEH, BAHRAMI, HOSSEIN, & KOLAHAN, FARHAD. (2011). EVALUATING THE EFFECTS OF PARAMETERS SETTING ON THE PERFORMANCE OF GENETIC ALGORITHM USING REGRESSION MODELING AND STATISTICAL ANALYSIS. ADVANCES IN INDUSTRIAL ENGINEERING (JOURNAL OF INDUSTRIAL ENGINEERING), -(SUPPLEMENT), 61-68. SID. https://sid.ir/paper/166417/en

    Vancouver: Copy

    HASANI DOUGHABADI MARZIYEH, BAHRAMI HOSSEIN, KOLAHAN FARHAD. EVALUATING THE EFFECTS OF PARAMETERS SETTING ON THE PERFORMANCE OF GENETIC ALGORITHM USING REGRESSION MODELING AND STATISTICAL ANALYSIS. ADVANCES IN INDUSTRIAL ENGINEERING (JOURNAL OF INDUSTRIAL ENGINEERING)[Internet]. 2011;-(SUPPLEMENT):61-68. Available from: https://sid.ir/paper/166417/en

    IEEE: Copy

    MARZIYEH HASANI DOUGHABADI, HOSSEIN BAHRAMI, and FARHAD KOLAHAN, “EVALUATING THE EFFECTS OF PARAMETERS SETTING ON THE PERFORMANCE OF GENETIC ALGORITHM USING REGRESSION MODELING AND STATISTICAL ANALYSIS,” ADVANCES IN INDUSTRIAL ENGINEERING (JOURNAL OF INDUSTRIAL ENGINEERING), vol. -, no. SUPPLEMENT, pp. 61–68, 2011, [Online]. Available: https://sid.ir/paper/166417/en

    Related Journal Papers

    Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top