مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

مقاله مقاله نشریه

مشخصات مقاله

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

1,508
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

844
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

پیش بینی زمانی و مکانی سطح آب زیرزمینی با استفاده از روش های هوش مصنوعی و زمین آمار (مطالعه موردی: آبخوان دشت دوزدوزان)

صفحات

 صفحه شروع 281 | صفحه پایان 301

کلیدواژه

شبکه های عصبی مصنوعی (ANNs)Q2
مدل فازی ساگنو (SFL)Q2

چکیده

 نبود منابع آب سطحی دائمی در بسیاری از نقاط کشور باعث اضافه برداشت آب از منابع محدود زیرزمینی شده است. در دشت دوزدوزان که در حوضه آبریز دریاچه ارومیه قرار دارد, به دلیل عدم جریان سطحی دائمی برداشت بی رویه از منابع آب زیرزمینی باعث ایجاد متوسط افت 76 سانتی متر در سال شده است. هدف از این تحقیق پیش بینی سطح آب زیرزمینی در این دشت با استفاده از روش های هوش مصنوعی و زمین آمار می باشد. در ابتدا با استفاده از روش خوشه بندی مرتبه ای (HCA) پیزومترها دسته بندی شدند. با انجام آنالیز حساسیت, داده های ماهانه سطح آب, بارش و تبخیر هرکدام با یک تاخیر زمانی طی دوره 10 ساله (91-82) به عنوان ورودی های مدل انتخاب شدند. پس از نرمال سازی داده ها مدل سازی با شبکه های عصبی (ANNs) انجام شد. به منظور بررسی بیشتر شبیه سازی با مدل فازی ساگنو (SFL) نیز انجام شد. برای مقایسه نتایج دو مدل شاخص های آماری جذر میانگین مربعات خطا و ضریب تبیین به کار گرفته شدند. با توجه به برتری مدل ANNs, مدل کریجینگ و کوکریجینگ عصبی برای پیش بینی مکانی سطح ایستابی انتخاب شدند و پیش بینی مکانی با هر دو مدل انجام شد. نتایج نشان داد که مدل کوکریجینگ با در نظر گرفتن پارامتر ثانویه توپوگرافی نسبت به مدل کریجینگ پیش بینی دقیق تری داشته است. بر اساس نتایج به دست آمده با افزایش بازه زمانی پیش بینی خطای مدل ترکیبی (کوکریجینگ عصبی) افزایش می یابد که بیش تر به دلیل افزایش خطای مدل شبکه عصبی مصنوعی با افزاییش بازه زمانی پیش بینی می باشد و خطای مدل زمین آمار (کوکریجینگ) نامحسوس به نظر می رسد.

استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    APA: کپی

    ندیری، عطااله، نادری، کیوان، اصغری مقدم، اصغر، و حبیبی، محمدحسن. (1395). پیش بینی زمانی و مکانی سطح آب زیرزمینی با استفاده از روش های هوش مصنوعی و زمین آمار (مطالعه موردی: آبخوان دشت دوزدوزان). جغرافیا و برنامه ریزی، 20(58)، 281-301. SID. https://sid.ir/paper/203693/fa

    Vancouver: کپی

    ندیری عطااله، نادری کیوان، اصغری مقدم اصغر، حبیبی محمدحسن. پیش بینی زمانی و مکانی سطح آب زیرزمینی با استفاده از روش های هوش مصنوعی و زمین آمار (مطالعه موردی: آبخوان دشت دوزدوزان). جغرافیا و برنامه ریزی[Internet]. 1395؛20(58):281-301. Available from: https://sid.ir/paper/203693/fa

    IEEE: کپی

    عطااله ندیری، کیوان نادری، اصغر اصغری مقدم، و محمدحسن حبیبی، “پیش بینی زمانی و مکانی سطح آب زیرزمینی با استفاده از روش های هوش مصنوعی و زمین آمار (مطالعه موردی: آبخوان دشت دوزدوزان)،” جغرافیا و برنامه ریزی، vol. 20، no. 58، pp. 281–301، 1395، [Online]. Available: https://sid.ir/paper/203693/fa

    مقالات مرتبط نشریه ای

    مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button