مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

370
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Soil Moisture Linear Modeling by Using Decomposition and Selection of Fully Polarized SAR Features

Pages

  51-66

Abstract

Soil moisture is a key variable in the hydrologic process, which is affected by the exchange of water and energy on the Earth's surface. Precise estimation of spatial and temporal variations of Soil moisture is crucial for environmental studies. The Polarimetric SAR (PolSAR) images are a convenient tool for this purpose. These images also guarantee both broad coverage and suitable spatial resolution. In this study, a Linear analytical model has been suggested for estimating Soil moisture. This model uses data GAthered by the AIRSAR sensor in 2003 in C, L, and P bands. For this purpose, with incorporation of a genetic algorithm (GA), sequential forward selection (SFS), and sequential backward selection (SBS), we examine and select appropriate features best fitted for Soil moisture modeling. Also in this estimation, Soil moisture measurements were compared to in-situ data. The results showed that the proposed method (linear analysis model) had a good efficiency by using GA feature selection compare to both SFS and SBS feature selection. ReGArding statistical parameters for proposed method, R2 model is higher than %80 and RMSE is less than 0. 027 for P, L, and C bands, which in comparison with other algorithms, the R2 model estimates Soil moisture more accurately. Also, the best bands to estimate Soil moisture model using proposed model and incorporated PolSAR features is the C band.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Khedri, Esmaeil, & HASANLOU, MAHDI. (2018). Soil Moisture Linear Modeling by Using Decomposition and Selection of Fully Polarized SAR Features. ENGINEERING JOURNAL OF GEOSPATIAL INFORMATION TECHNOLOGY, 6(3 ), 51-66. SID. https://sid.ir/paper/230081/en

    Vancouver: Copy

    Khedri Esmaeil, HASANLOU MAHDI. Soil Moisture Linear Modeling by Using Decomposition and Selection of Fully Polarized SAR Features. ENGINEERING JOURNAL OF GEOSPATIAL INFORMATION TECHNOLOGY[Internet]. 2018;6(3 ):51-66. Available from: https://sid.ir/paper/230081/en

    IEEE: Copy

    Esmaeil Khedri, and MAHDI HASANLOU, “Soil Moisture Linear Modeling by Using Decomposition and Selection of Fully Polarized SAR Features,” ENGINEERING JOURNAL OF GEOSPATIAL INFORMATION TECHNOLOGY, vol. 6, no. 3 , pp. 51–66, 2018, [Online]. Available: https://sid.ir/paper/230081/en

    Related Journal Papers

    Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top