مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

469
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Pages

  77-99

Abstract

 Nowadays, Ground Vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, costeffective and low volume of images. The methods that have been proposed for vehicle extraction from thermal infrared imaging often experience problems such as low accuracy in detection, segmentation (e. g. HOG+SVM) and also the need for big data training (e. g. deep learning methods). In the present study, a new model, called SegRBM-Net, based on deep learning (DL) and the restricted Boltzmann machine (RBM) is being presented. One of the features of the SegRBM-Net model is the improving accuracy of vehicle detection and segmentation from thermal infrared images by using both convolutional layers and the features of the Gaussian-Bernoulli Restricted Boltzmann Machine. This structure has led the algorithm to find the target faster and more accurately than other DL methods. To examine the performance of the proposed method, we performed a controlled benchmark (e. g. high density of vehicles scene, and difference in viewing angle) of SegRBM-Net and other DL models on four UAV-TIR image datasets. The results showed that the SegRBM-Net model with a mean accuracy of 99% and improved processing speed compared with similar methods have a good performance.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Khoshboresh Masouleh, Mahdi, & SHAH HOSSEINI, REZA. (2020). Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images. ENGINEERING JOURNAL OF GEOSPATIAL INFORMATION TECHNOLOGY, 7(4 ), 77-99. SID. https://sid.ir/paper/230157/en

    Vancouver: Copy

    Khoshboresh Masouleh Mahdi, SHAH HOSSEINI REZA. Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images. ENGINEERING JOURNAL OF GEOSPATIAL INFORMATION TECHNOLOGY[Internet]. 2020;7(4 ):77-99. Available from: https://sid.ir/paper/230157/en

    IEEE: Copy

    Mahdi Khoshboresh Masouleh, and REZA SHAH HOSSEINI, “Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images,” ENGINEERING JOURNAL OF GEOSPATIAL INFORMATION TECHNOLOGY, vol. 7, no. 4 , pp. 77–99, 2020, [Online]. Available: https://sid.ir/paper/230157/en

    Related Journal Papers

    Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top