Information Journal Paper
APA:
CopyASLANI, M., MESGARI, M.S., & Motieyan, h.. (2016). AN ACTOR-CRITIC REINFORCEMENT LEARNING APPROACH IN MULTI-AGENT SYSTEMS FOR URBAN TRAFFIC CONTROL. JOURNAL OF GEOMATICS SCIENCE AND TECHNOLOGY, 5(3), 233-245. SID. https://sid.ir/paper/249511/en
Vancouver:
CopyASLANI M., MESGARI M.S., Motieyan h.. AN ACTOR-CRITIC REINFORCEMENT LEARNING APPROACH IN MULTI-AGENT SYSTEMS FOR URBAN TRAFFIC CONTROL. JOURNAL OF GEOMATICS SCIENCE AND TECHNOLOGY[Internet]. 2016;5(3):233-245. Available from: https://sid.ir/paper/249511/en
IEEE:
CopyM. ASLANI, M.S. MESGARI, and h. Motieyan, “AN ACTOR-CRITIC REINFORCEMENT LEARNING APPROACH IN MULTI-AGENT SYSTEMS FOR URBAN TRAFFIC CONTROL,” JOURNAL OF GEOMATICS SCIENCE AND TECHNOLOGY, vol. 5, no. 3, pp. 233–245, 2016, [Online]. Available: https://sid.ir/paper/249511/en