مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

712
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Mesoporous activated carbon production from lignocellulose waste for removing reactive dyes Blue 19 and Blue 21 from aqueous solution

Pages

  17-31

Abstract

 Introduction. Reactive dyes have been increasing in textile industries for dyeing natural and synthetic fibers. Discharge of dye-bearing waste-water makes an adverse effect on aquatic environment because the dyes give water undesirable color. The major environmental and health problems associated with water pollution caused by the discharge of untreated textile effluent are due to disorders in the aquatic environment because of use of toxic chemicals. The aim of this study was to investigate the adsorption potential of as-produced Activated carbon from Grape wood residue (Vitis Vinifera) in order to remove Reactive Blue 19 (RB19) and Reactive Blue 21 (RB21) dyes from aqueous solution. Activated carbon is the most common adsorbent for the removal of many dyes. Activated carbons are made from various agricultural wastes by physical and chemical activation. The preparation of Activated carbon from agricultural waste could increase economic return and also provides an excellent method for the solid waste disposal thereby reduce pollution. Method: The adsorbates in this study included three reactive dyes, Reactive Red 23 (RR23), Reactive Blue 19 and Reactive Blue 21. All dyes were commercial grade and employed without further purification. The Activated carbon was synthesized from Grape wood biomass by activation of phosphoric acid (H3PO4) with impragnation ratios of 1: 1 1: 2, 1: 3, 1: 4. The FTIR, BET, and SEM techniques were used to characterize the as-prepared carbon materials. In addition, dye adsorption experiments were carried out, which measurements are taken for all of the samples under in the same condition, at pH of 2, adsorbent dose of 0. 01 g/l, initial dye concentration of 250 mg/l, sworking volume of 100 ml, and contact time of 120 min. Results and discussion: The results showed that the carbon sample activated under imprenation ratio of 1: 4 and temperature of 600oC, that obtained a special surface area of 1850 m2/g, and total pore volume of 2. 40 cm3/g, and pore size distribution of mesoporous at 86%, had maximum adsorption capacity of 1932 and 908 mg/g for RB19 and RB21 dyes, respectively. The adsorption behaviors of three reactive dyes (Reactive Blue 19 23, Reactive Blue 21) onto this biomass Activated carbon were investigated in batch systems. The experimental data were analysed by the Langmuir, Freundlich and Sips models of adsorption. Equilibrium data of dyse fitted well with the Sips model. The rates of adsorption were found to conform to the pseudo-second-order kinetics with good correlation. The equilibrium adsorption capacity of the Activated carbon was determined with the Langmuir equation found to be 1914 mg/g for Reactive Blue 19 and 1195 mg/g for Reactive Blue 21. Conclusion: This study showed that Activated carbon produced from annual pruning vineyards waste has a high potential in the treatment of textile wastewater. Also results indicate that Activated carbon from Grape wood could be employed as low-cost alternative to commercial Activated carbon in wastewater treatment for the removal of acid dyes.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Bijari, Mehran, YOUNESI, HABIBOLLAH, & BAHRAMIFAR, NADER. (2018). Mesoporous activated carbon production from lignocellulose waste for removing reactive dyes Blue 19 and Blue 21 from aqueous solution. MODARES CIVIL ENGINEERING JOURNAL, 18(5 ), 17-31. SID. https://sid.ir/paper/256882/en

    Vancouver: Copy

    Bijari Mehran, YOUNESI HABIBOLLAH, BAHRAMIFAR NADER. Mesoporous activated carbon production from lignocellulose waste for removing reactive dyes Blue 19 and Blue 21 from aqueous solution. MODARES CIVIL ENGINEERING JOURNAL[Internet]. 2018;18(5 ):17-31. Available from: https://sid.ir/paper/256882/en

    IEEE: Copy

    Mehran Bijari, HABIBOLLAH YOUNESI, and NADER BAHRAMIFAR, “Mesoporous activated carbon production from lignocellulose waste for removing reactive dyes Blue 19 and Blue 21 from aqueous solution,” MODARES CIVIL ENGINEERING JOURNAL, vol. 18, no. 5 , pp. 17–31, 2018, [Online]. Available: https://sid.ir/paper/256882/en

    Related Journal Papers

    Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button