مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

212
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

161
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Vapor solidification of saturated air in two-dimensional stagnation flow

Pages

  693-703

Abstract

 In the present paper, Stagnation flow solidification of vapor from saturated air is investigated. Saturated air with strain rate a impinges on a flat plate and, because the plate temperature is below the freezing temperature of water, condensation occurs and an ice layer forms on the plate. The ice surface is modeled as an accelerated flat plate moving toward the impinging fluid. The unsteady Navier-Stokes equations were subjected to a similarity transformation to obtain a single ordinary differential equation for the velocity distribution. Two methods of solution were used for the energy equation: a finite-difference numerical technique and a numerical solution of a similarity equation; these two results were compared to establish accuracy. Freezing time first increases as the far-field temperature decreases from above zero degrees Celcius and then rapidly approaches zero as the far-field temperature approaches zero Celcius. Despite the physical experiment, here the size of the nearest cell to the substrate controls the time at which condensation begins. As a result, maximum time before freezing begins occurs at about 5℃ air temperature, with the cell size 0. 01 or 0. 02 mm. The air temperature distribution and the ultimate frozen thickness for two saturated air temperatures are also presented.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Shokrgozar Abbasi, a., & GHAYENI, M.. (2020). Vapor solidification of saturated air in two-dimensional stagnation flow. SCIENTIA IRANICA, 27(2 (Transactions B: Mechanical Engineering)), 693-703. SID. https://sid.ir/paper/290813/en

    Vancouver: Copy

    Shokrgozar Abbasi a., GHAYENI M.. Vapor solidification of saturated air in two-dimensional stagnation flow. SCIENTIA IRANICA[Internet]. 2020;27(2 (Transactions B: Mechanical Engineering)):693-703. Available from: https://sid.ir/paper/290813/en

    IEEE: Copy

    a. Shokrgozar Abbasi, and M. GHAYENI, “Vapor solidification of saturated air in two-dimensional stagnation flow,” SCIENTIA IRANICA, vol. 27, no. 2 (Transactions B: Mechanical Engineering), pp. 693–703, 2020, [Online]. Available: https://sid.ir/paper/290813/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button