مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

144
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

122
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Assessment of Salinity Indices to Identify Mint Ecotypes using Intelligent and Regression Models

Author(s)

Hosseini Seyyed Jaber | Tahmasebi Sarvestani Zeinolabedin | PIRDASHTI HEMATOLLAH | Modarres Sanavy Seyyed Ali Mohammad | MOKHTASSI BIDGOLI ALI | Hazrati Saeid | Nicola Silvana | Issue Writer Certificate 

Pages

  119-137

Abstract

 Despite recent development in producing chemical medicines, associated side effects have led to increased use of medicinal plants and natural compounds. Soil salinity, especially in arid and semi-arid regions, is a serious threat to global agriculture. Nowadays, efforts have been made to find benchmarks that can effectively select salt-tolerant or salt-resistant genotypes. In this regard, the use of computer software to predict the indices can help us for screening the most tolerant ecotypes. The objectives of the present study were to determine the best indicators of salinity tolerance using intelligent and regression models for eighteen commercial ecotypes of Mint. The seedlings were planted in plastic pots and arranged in a split factorial experiment in a randomized complete block design with four replicates. The treatments consisted of four levels of salinity (0, 2. 5, 5 and 7. 5 dS m-1), two levels of harvesting time, and 18 ecotypes. The plants were grown until the flowering stage and then harvested. There was a significant difference between ecotypes in terms of calculated indices at all three levels of salinity. Indicators such as TOL, MP, GMP, YSI, STI and HM showed a significant positive correlation with YS and YP at all three levels of salinity. The cluster analysis divided the ecotypes into three distinct groups based on the calculated indices at all levels of salinity. The principal component analysis revealed that the YP, YS, TOL, MP, GMP, YSI, STI and HM were more suitable among others salt stress indices. The sensitivity analysis at 2. 5 dS m-1 salinity level showed that the HM, STI, YSI, YI, SSI and MP indices were of higher importance than the others. At 5 dS m-1 salinity level, the HM, STI, YSI, YI, GMP and MP indices showed the highest importance whereas at 7. 5 dS m-1 salinity level, the STI, YSI, YI, GMP and YP indices indicated the highest importance. In general, the results suggest that ANN(MLP) model (R2 = 0. 999) is the best model to predict at all salinity levels. E13, E14, E15, E16 and E18 ecotypes are the most salt tolerant ecotypes which can be used for the future breeding program.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Hosseini, Seyyed Jaber, Tahmasebi Sarvestani, Zeinolabedin, PIRDASHTI, HEMATOLLAH, Modarres Sanavy, Seyyed Ali Mohammad, MOKHTASSI BIDGOLI, ALI, Hazrati, Saeid, & Nicola, Silvana. (2020). Assessment of Salinity Indices to Identify Mint Ecotypes using Intelligent and Regression Models. INTERNATIONAL JOURNAL OF HORTICULTURAL SCIENCE AND TECHNOLOGY, 7(2), 119-137. SID. https://sid.ir/paper/347943/en

    Vancouver: Copy

    Hosseini Seyyed Jaber, Tahmasebi Sarvestani Zeinolabedin, PIRDASHTI HEMATOLLAH, Modarres Sanavy Seyyed Ali Mohammad, MOKHTASSI BIDGOLI ALI, Hazrati Saeid, Nicola Silvana. Assessment of Salinity Indices to Identify Mint Ecotypes using Intelligent and Regression Models. INTERNATIONAL JOURNAL OF HORTICULTURAL SCIENCE AND TECHNOLOGY[Internet]. 2020;7(2):119-137. Available from: https://sid.ir/paper/347943/en

    IEEE: Copy

    Seyyed Jaber Hosseini, Zeinolabedin Tahmasebi Sarvestani, HEMATOLLAH PIRDASHTI, Seyyed Ali Mohammad Modarres Sanavy, ALI MOKHTASSI BIDGOLI, Saeid Hazrati, and Silvana Nicola, “Assessment of Salinity Indices to Identify Mint Ecotypes using Intelligent and Regression Models,” INTERNATIONAL JOURNAL OF HORTICULTURAL SCIENCE AND TECHNOLOGY, vol. 7, no. 2, pp. 119–137, 2020, [Online]. Available: https://sid.ir/paper/347943/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button