Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

مقاله مقاله نشریه

مشخصات مقاله

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

380
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

553
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

برآورد مقدار تبخیر با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک (مطالعه موردی: ایستگاه تبریز)

صفحات

 صفحه شروع 71 | صفحه پایان 90

چکیده

 به سبب تاثیر متقابل عناصر هواشناختی در محاسبه قدرت تبخیر جو, تخمین آن یک کار پیچیده و غیر خطی است. لذا برای تخمین آن باید از مدل های پیشرفته ریاضی استفاده نمود. در این مطالعه جهت برآورد قدرت تبخیر جو در سطح ایستگاه تبریز از شبکه های عصبی مصنوعی بر پایه دو الگوریتم آموزشی لونبرگ مارکوئت و الگوریتم ژنتیک, رگرسیون خطی چند متغیره و معادله پنمن فائو استفاده شده است. بر این اساس در مدل شبکه عصبی با اتخاذ یک و دو لایه پنهان و دو تابع فعال سازی تان سیگمویید و لوگ سیگمویید, 56 مدل شبکه عصبی تولید شد. ارزیابی و مقایسه نتایج این مدل ها براساس معیارهای چون ضریب تعیین و مجذور میانگین مربعات خطا نشان داد که دقت مدل ها بستگی به نوع تابع محرک, نوع الگوریتم آموزشی, تعداد لایه های پنهان و تعداد نرون های اتخاذ شده دارد. از سوی نتایج نشان داد که در مدل های تک لایه, دقت وزن دهی الگوریتم ژنتیک برای هر دو تابع فعال ساز بیش از الگوریتم لونبرگ مارکوئت است. از سویی در مدل های با دو لایه پنهان دقت وزن دهی الگوریتم آموزشی لونبرگ مارکوئت بیش از الگوریتم ژنتیک بوده؛ به طوری که دقیق ترین مدل شبکه با آرایش 5-7-7-1 با مجذور میانگین مربعات خطای 227/0 میلی متر بر اساس الگوریتم آموزشی لونبرگ مارکوئت و دو لایه پنهان و تابع فعال سازی تان سیگمویید تولید شده بود. همچنین مجذور میانگین مربعات خطای مدل رگرسیون خطی چند متغیره و معادله پنمن فائو به ترتیب به مقدار 79/0 و 34/1 بدست آمد. بنابراین مدل شبکه عصبی در قیاس با دو مدل مذکور دارای کارایی بهتر, ضریب دقت بیشتر و مقدار خطای کمتری جهت پیش بینی مقدار تبخیر ایستگاه تبریز است.

استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    APA: کپی

    خورشیددوست، علی محمد، میرهاشمی، حمید، و نظری، موسی. (1398). برآورد مقدار تبخیر با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک (مطالعه موردی: ایستگاه تبریز). جغرافیا و برنامه ریزی، 23(68 )، 71-90. SID. https://sid.ir/paper/359369/fa

    Vancouver: کپی

    خورشیددوست علی محمد، میرهاشمی حمید، نظری موسی. برآورد مقدار تبخیر با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک (مطالعه موردی: ایستگاه تبریز). جغرافیا و برنامه ریزی[Internet]. 1398؛23(68 ):71-90. Available from: https://sid.ir/paper/359369/fa

    IEEE: کپی

    علی محمد خورشیددوست، حمید میرهاشمی، و موسی نظری، “برآورد مقدار تبخیر با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک (مطالعه موردی: ایستگاه تبریز)،” جغرافیا و برنامه ریزی، vol. 23، no. 68 ، pp. 71–90، 1398، [Online]. Available: https://sid.ir/paper/359369/fa

    مقالات مرتبط نشریه ای

    مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا