مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

مقاله مقاله نشریه

مشخصات مقاله

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

364
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

493
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

پیش بینی ورشکستگی شرکت های پذیرفته شده در بورس اوراق بهادار تهران با روش های شبکه عصبی مصنوعی و مدل فولمر

صفحات

 صفحه شروع 153 | صفحه پایان 168

چکیده

 هدف درماندگی مالی و ورشکستگی, هزینه های زیادی داشته و به اقتصاد کشورها صدمه وارد می کند و پیش بینی آن جهت جلوگیری از ورشکستگی کمک شایان توجهی می کند. هدف پژوهش پیش بینی ورشکستگی و سودآوری شرکت ها جهت ارزیابی عملکرد و وضعیت مالی با استفاده از رگرسیون لجستیک و نسبت های مالی بامدل های شبکه عصبی مصنوعی و فولمر براساس دوره زمانی 1391 الی 1397 برای 132 شرکت بورس هست. روش برای برازش مدل فولمر از نرم افزار EViews و برای برازش مدل شبکه عصبی از نرم افزار Spss26 استفاده شده است. شاخص های استفاده شده در مدل ها شامل نسبت بدهی به حقوق صاحبان سهام, سود قبل از بهره و مالیات, جمع بدهی ها به مجموع دارایی ها, حساب های دریافتنی به فروش, سود خالص بر دارایی, بدهی بلندمدت به دارایی, سرمایه در گردش, سود خالص به فروش هستند. یافته ها: با استفاده از نتایج و مدل های ارایه شده در پژوهش می توان از مبتلا شدن شرکت ها به بحران مالی, ورشکستگی و همچنین پیامدهای آن, به طور مناسبی جلوگیری کرد. البته توجه این نکته نیز ضروری است که پس از پیش بینی می بایستی به ریشه یابی مساله و پیگیری علل پرداخته شود. نتیجه گیری: نتایج پژوهش نشان داد میزان قدرت و دقت پیش بینی ورشکستگی مدل شبکه عصبی مصنوعی در مقایسه با مدل فولمر از دقت بالاتری برخوردار است و همچنین حساب های دریافتنی بر فروش بیشترین و نسبت بدهی به حقوق صاحبان سهام کمترین نسبت های مالی موثر بر ورشکستگی در مدل شبکه عصبی مصنوعی هست.

استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    APA: کپی

    دباغ، رحیم، و شیخ بیگلو، سیما. (1399). پیش بینی ورشکستگی شرکت های پذیرفته شده در بورس اوراق بهادار تهران با روش های شبکه عصبی مصنوعی و مدل فولمر. توسعه و سرمایه، 5(2 (9 پیاپی) )، 153-168. SID. https://sid.ir/paper/415884/fa

    Vancouver: کپی

    دباغ رحیم، شیخ بیگلو سیما. پیش بینی ورشکستگی شرکت های پذیرفته شده در بورس اوراق بهادار تهران با روش های شبکه عصبی مصنوعی و مدل فولمر. توسعه و سرمایه[Internet]. 1399؛5(2 (9 پیاپی) ):153-168. Available from: https://sid.ir/paper/415884/fa

    IEEE: کپی

    رحیم دباغ، و سیما شیخ بیگلو، “پیش بینی ورشکستگی شرکت های پذیرفته شده در بورس اوراق بهادار تهران با روش های شبکه عصبی مصنوعی و مدل فولمر،” توسعه و سرمایه، vol. 5، no. 2 (9 پیاپی) ، pp. 153–168، 1399، [Online]. Available: https://sid.ir/paper/415884/fa

    مقالات مرتبط نشریه ای

  • ثبت نشده است.
  • مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button