مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

مقاله مقاله نشریه

مشخصات مقاله

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

730
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

253
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

بهبود مدل های ترکیبی (ANNs & ARIMA) با بکارگیری شبکه های عصبی احتمالی به منظور پیش بینی سری های زمانی

صفحات

 صفحه شروع 181 | صفحه پایان 193

کلیدواژه

مدل های خودرگرسیون میانگین متحرک انباشته (ARIMA)Q3
شبکه های عصبی احتمالی (PNNs)Q3
شبکه های عصبی مصنوعی(ANNs)Q3

چکیده

 دقت پیش بینی ها از مهمترین فاکتورهای موثر در انتخاب روش های پیش بینی می باشند. امروزه علی رغم وجود روش های متعدد پیش بینی, هنوز پیش بینی های دقیق, بویژه در بازارهای مالی کار چندان ساده ای نبوده و اکثر محققان درصدد بکارگیری و ترکیب روش های متفاوت به منظور حصول نتایج دقیق تر می باشند. در سال های اخیر تلاش های فراوانی به منظور بهبود روش های پیش بینی سری های زمانی صورت گرفته است. مدل های ترکیبی میانگین متحرک خودرگرسیون انباشته (ARIMA) با شبکه های عصبی مصنوعی(ANNs)  از این جمله مدل های بهبود یافته می باشند. این گونه از مدل ها با بهره گیری از مزایای منحصر به فرد هر یک از روش های مدل سازی خطی و غیرخطی, نتایج حاصله را بهبود بخشیده اند. در این مقاله با استفاده از شبکه های عصبی احتمالی(PNNs)  روند تغییرات باقیمانده های سری زمانی مورد مطالعه تشخیص و دقت روش ترکیبی بهبود داده شده است. نتایج حاصله از بکارگیری روش پیشنهادی در پیش بینی نرخ ارز موجب 10 % بهبود نسبت به مدل ترکیبی میانگین متحرک خودرگرسیون انباشته با شبکه های عصبی مصنوعی در میانگین قدرمطلق خطا گردیده است.

استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    APA: کپی

    خاشعی، مهدی، بیجاری، مهدی، و رییسی اردلی، غلامعلی. (1389). بهبود مدل های ترکیبی (ANNs & ARIMA) با بکارگیری شبکه های عصبی احتمالی به منظور پیش بینی سری های زمانی. نشریه مهندسی صنایع (دانشکده فنی دانشگاه تهران)، 44(2)، 181-193. SID. https://sid.ir/paper/471543/fa

    Vancouver: کپی

    خاشعی مهدی، بیجاری مهدی، رییسی اردلی غلامعلی. بهبود مدل های ترکیبی (ANNs & ARIMA) با بکارگیری شبکه های عصبی احتمالی به منظور پیش بینی سری های زمانی. نشریه مهندسی صنایع (دانشکده فنی دانشگاه تهران)[Internet]. 1389؛44(2):181-193. Available from: https://sid.ir/paper/471543/fa

    IEEE: کپی

    مهدی خاشعی، مهدی بیجاری، و غلامعلی رییسی اردلی، “بهبود مدل های ترکیبی (ANNs & ARIMA) با بکارگیری شبکه های عصبی احتمالی به منظور پیش بینی سری های زمانی،” نشریه مهندسی صنایع (دانشکده فنی دانشگاه تهران)، vol. 44، no. 2، pp. 181–193، 1389، [Online]. Available: https://sid.ir/paper/471543/fa

    مقالات مرتبط نشریه ای

    مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button