مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

182
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Improving Precision of Keywords Extracted From Persian Text Using Word2Vec Algorithm

Pages

  51-60

Abstract

 Keywords can present the main concepts of the text without human intervention according to the model. Keywords are important vocabulary words that describe the text and play a very important role in accurate and fast understanding of the content. The purpose of extracting keywords is to identify the subject of the text and the main content of the text in the shortest time. Keyword extraction plays an important role in the fields of text summarization, document labeling, information retrieval, and subject extraction from text. For example, summarizing the contents of large texts into smaller texts is difficult, but having keywords in the text can make you aware of the topics in the text. Identifying keywords from the text with common methods is time-consuming and costly. Keyword extraction methods can be classified into two types with observer and without observer. In general, the process of extracting keywords can be explained in such a way that first the text is converted into smaller units called the word, then the redundant words are removed and the remaining words are weighted, then the keywords are selected from these words. Our proposed method in this paper for identifying keywords is a method with observer. In this paper, we first calculate the word correlation matrix per document using a feed forward neural network and word2vec algorithm. Then, using the correlation matrix and a limited initial list of keywords, we extract the closest words in terms of similarity in the form of the list of nearest neighbors. Next we sort the last list in descending format, and select different percentages of words from the beginning of the list, and repeat the process of learning the neural network 10 times for each percentage and creating a correlation matrix and extracting the list of closest neighbors. Finally, we calculate the average accuracy, recall, and F-measure. We continue to do this until we get the best results in the evaluation, the results show that for the largest selection of 40% of the words from the beginning of the list of closest neighbors, the acceptable results are obtained. The algorithm has been tested on corpus with 800 news items that have been manually extracted by keywords, and laboratory results show that the accuracy of the suggested method will be 78%.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Hasni Ahangar, MohammadReza, & Amiri Jezeh, Ali. (2021). Improving Precision of Keywords Extracted From Persian Text Using Word2Vec Algorithm. SIGNAL AND DATA PROCESSING, 18(1 (47) ), 51-60. SID. https://sid.ir/paper/954942/en

    Vancouver: Copy

    Hasni Ahangar MohammadReza, Amiri Jezeh Ali. Improving Precision of Keywords Extracted From Persian Text Using Word2Vec Algorithm. SIGNAL AND DATA PROCESSING[Internet]. 2021;18(1 (47) ):51-60. Available from: https://sid.ir/paper/954942/en

    IEEE: Copy

    MohammadReza Hasni Ahangar, and Ali Amiri Jezeh, “Improving Precision of Keywords Extracted From Persian Text Using Word2Vec Algorithm,” SIGNAL AND DATA PROCESSING, vol. 18, no. 1 (47) , pp. 51–60, 2021, [Online]. Available: https://sid.ir/paper/954942/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button