مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

127
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

A social recommender system based on matrix factorization considering dynamics of user preferences

Pages

  13-28

Abstract

 With the expansion of social networks, the use of recommender systems in these networks has attracted considerable attention. Recommender systems have become an important tool for alleviating the information that overload problem of users by providing personalized recommendations to a user who might like based on past preferences or observed behavior about one or various items. In these systems, the users’ behavior is dynamic and their preferences change over time for different reasons. The adaptability of recommender systems to capture the evolving user preferences, which are changing constantly, is essential. Recent studies point out that the modeling and capturing the dynamics of user preferences lead to significant improvements in recommendation accuracy. In spite of the importance of this issue, only a few approaches recently proposed that take into account the dynamic behavior of the users in making recommendations. Most of these approaches are based on the matrix factorization scheme. However, most of them assume that the preference dynamics are homogeneous for all users, whereas the changes in user preferences may be individual and the time change pattern for each user differs. In addition, because the amount of numerical ratings dramatically reduced in a specific time period, the sparsity problem in these approaches is more intense. Exploiting social information such as the trust relations between users besides the users’ rating data can help to alleviate the sparsity problem. Although social information is also very sparse, especially in a time period, it is complementary to rating information. Some works use tensor factorization to capture user preference dynamics. Despite the success of these works, the processing and solving the tensor decomposition is hard and usually leads to very high computing costs in practice, especially when the tensor is large and sparse. In this paper, considering that user preferences change individually over time, and based on the intuition that social influence can affect the users’ preferences in a recommender system, a Social recommender system is proposed. In this system, the users’ rating information and social trust information are jointly factorized based on a matrix factorization scheme. Based on this scheme, each users and items is characterized by a sets of features indicating latent factors of the users and items in the system. In addition, it is assumed that user preferences change smoothly, and the user preferences in the current time period depend on his/her preferences in the previous time period. Therefore, the user dynamics are modeled into this framework by learning a transition matrix of user preferences between two consecutive time periods for each individual user. The complexity analysis implies that this system can be scaled to large datasets with millions of users and items. Moreover, the experimental results on a dataset from a popular product review website, Epinions, show that the proposed system performs better than competitive methods in terms of MAE and RMSE.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Tahmasbi, Hamidreza, Jalali, Mehrdad, & SHAKERI, HASSAN. (2021). A social recommender system based on matrix factorization considering dynamics of user preferences. SIGNAL AND DATA PROCESSING, 18(1 (47) ), 13-28. SID. https://sid.ir/paper/960919/en

    Vancouver: Copy

    Tahmasbi Hamidreza, Jalali Mehrdad, SHAKERI HASSAN. A social recommender system based on matrix factorization considering dynamics of user preferences. SIGNAL AND DATA PROCESSING[Internet]. 2021;18(1 (47) ):13-28. Available from: https://sid.ir/paper/960919/en

    IEEE: Copy

    Hamidreza Tahmasbi, Mehrdad Jalali, and HASSAN SHAKERI, “A social recommender system based on matrix factorization considering dynamics of user preferences,” SIGNAL AND DATA PROCESSING, vol. 18, no. 1 (47) , pp. 13–28, 2021, [Online]. Available: https://sid.ir/paper/960919/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button