Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

مقاله مقاله نشریه

مشخصات مقاله

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

230
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

426
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

برآورد مقدار بخار آب قابل بارش (PWV) با استفاده از روش های مبتنی بر یادگیری در منطقه شمال غرب ایران

صفحات

 صفحه شروع 139 | صفحه پایان 155

چکیده

 در این مقاله با استفاده از روش های مبتنی بر یادگیری مقدار بخار آب قابل بارش (PWV) به صورت مکانی-زمانی مدل سازی شده و سپس پیش بینی می شود. از سه مدل شبکه های عصبی مصنوعی (ANNs), سیستم استنتاج عصبی-فازی سازگار (ANFIS) و مدل رگرسیون بردار پشتیبان (SVR) برای انجام این کار استفاده شده است. برای مقایسه کارایی و دقت این سه مدل, نتایج حاصل با مشاهدات بخار آب قابل بارش حاصل از ایستگاه رادیوسوند (PWVradiosonde) و بخار آب قابل بارش به دست آمده از مدل تجربی ساستامنین (PWVSaastamoinen) نیز مقایسه شده است. مشاهدات 23 ایستگاه GPS مابین روزهای 300 الی 305 (6 روز) از سال 2011 در منطقه شمال غرب ایران برای ارزیابی مدل ها, به کار گرفته شده است. دلیل انتخاب این منطقه و بازه زمانی مورد نظر, در دسترس بودن مجموعه کاملی از مشاهدات ایستگاه های GPS, رادیوسوند و ایستگاه های هواشناسی است. از 23 ایستگاه مورد نظر, مشاهدات دو ایستگاه KLBR و GGSH به منظور انجام تست نتایج حاصل کنار گذاشته می شود. در مرحله اول, تاخیر تر زنیتی (ZWD) از مشاهدات 21 ایستگاه GPS محاسبه و سپس تبدیل به مقدار PWV می شود. مقادیر PWV حاصل از این مرحله به عنوان خروجی هر سه مدل در نظر گرفته شده است. همچنین چهار پارامتر طول و عرض جغرافیایی ایستگاه, روز مشاهده (DOY) و زمان (min. ) به عنوان ورودی های سه مدل هستند. هر سه مدل با استفاده از الگوریتم پس انتشار خطا (BP) آموزش داده شده و کمینه خطای حاصل در محل ایستگاه رادیوسوند تبریز (38/08N وE46/28), به عنوان معیار پایان آموزش در نظر گرفته شده است. پس از مرحله آموزش, مقدار بخار آب قابل بارش در ایستگاه های تست با هر سه مدل محاسبه و سپس با مقدار بخار آب قابل بارش حاصل از GPS (PWVGPS) مقایسه می شوند. میانگین ضریب همبستگی محاسبه شده برای چهار مدل ANN, ANFIS, SVR و Saastamoinen در 6 روز مورد مطالعه به ترتیب برابر با 0/85, 0/88, 0/89 و 0/69 است. همچنین, میانگین RMSE برای چهار مدل در 6 روز به ترتیب برابر با 2/17, 1/90, 1/77 و 5/45 میلی متر شده است. نتایج حاصل از این مقاله نشان می دهد که مدل SVR از قابلیت بسیار بالایی در برآورد مقدار بخار آب قابل بارش برخوردار بوده و از نتایج آن می توان در مباحث مرتبط با هواشناسی و پیش بینی بارش استفاده نمود.

استنادها

  • ثبت نشده است.
  • ارجاعات

  • ثبت نشده است.
  • استناددهی

    APA: کپی

    غفاری رزین، میررضا، و هوشنگی، نوید. (1400). برآورد مقدار بخار آب قابل بارش (PWV) با استفاده از روش های مبتنی بر یادگیری در منطقه شمال غرب ایران. اطلاعات جغرافیایی، 30(120 )، 139-155. SID. https://sid.ir/paper/964986/fa

    Vancouver: کپی

    غفاری رزین میررضا، هوشنگی نوید. برآورد مقدار بخار آب قابل بارش (PWV) با استفاده از روش های مبتنی بر یادگیری در منطقه شمال غرب ایران. اطلاعات جغرافیایی[Internet]. 1400؛30(120 ):139-155. Available from: https://sid.ir/paper/964986/fa

    IEEE: کپی

    میررضا غفاری رزین، و نوید هوشنگی، “برآورد مقدار بخار آب قابل بارش (PWV) با استفاده از روش های مبتنی بر یادگیری در منطقه شمال غرب ایران،” اطلاعات جغرافیایی، vol. 30، no. 120 ، pp. 139–155، 1400، [Online]. Available: https://sid.ir/paper/964986/fa

    مقالات مرتبط نشریه ای

  • ثبت نشده است.
  • مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا