In this research, we try to improve the performance of ultraviolet (UV) photodetector based on ZnO nanorods through decoration with Au nanoparticles. One-dimensional ZnO nanorods were grown on the quartz substrates by the vapor phase transport (VPT) method. Then, Au nanoparticles by depositing a thin nanometric Au layer with thicknesses 3, 6, 9, and 12 nm via sputtering technique and a heating process were coated on the ZnO nanorods. The morphology and structure of the samples were characterized by using a Scanning Electron Microscope (SEM) and X-ray diffractometer (XRD). The results showed formation of rather aligned ZnO nanorods with wurtzite hexagonal crystalline structure and preferred orientation along the c-axis which are coated with Au nanoparticles. The obtained data from measuring ultraviolet photoresponse shows that the decorated sample with 9 nm thick Au film possesses a higher on/off ratio (6. 5), responsivity (568 ± 33 mA/W), and faster rise and decay times. In addition, with presence of Au nanoparticles, responsivity in the visible region (λ= 520 nm) increased from 6 ±0. 5 mA/W to 19±1 mA/W. This improved detecting behavior results from Localized Surface Plasmons (LSPs) of the Au nanoparticles and the formation of localized Schottky barriers between Au nanoparticles and ZnO.