Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective function, but also is independent of any order in presenting data patterns or fuzzy rules. It has a global optimum solution and needs only one regularization parameter C to be adjusted. In addition, a rule reduction method is proposed to eliminating low weighted rules and having a compact rule-base. This method is compared with some greedy, reinforcement and local search rule weighting methods on 13 standard datasets. The experimental results show that, the proposed method significantly outperforms the other ones especially from the viewpoint of generalization.