The fracture surfaces of PM Cr-Mo steels intensively depends on pores structure, densification, diffusion of alloying elements, contact area between particles (sinter necks), microstructural homogeneity, and type of applied load. Also, knowing about element distribution in PM parts to evaluate what places are good for crack growth, nucleation and coalescenc is important. In this investigation, fracture surfaces and crack growth mechanism for element distribution environments of cracks were studied under the three point bending (TPB) test. In this work, crack growth mechanism in Cr-Mo PM parts with three different densities (6.7, 7 and 7.2 g/cm3), were evaluated accurately. Crack walk occurred in some places that had more alloying elements, particularity molybdenum. In addition, crack route was obtained from among the sharpened porosities and martensite/bainite structures.