Structural geological study is one of the most important stages of an oilfield exploration and production (E& P) program, since a knowledge of existing structures can play a fundamental role in the oilfield development plan. The main purpose of this study is to create three-dimensional (3D) structural models to determine direction of tectonic stresses at Lali oilfield using subsurface geophysical data. The study area is located within the so-called Dezful Embayment (northern Khuzestan Province, Iran). Accordingly, in order to provide a 3D model of the reservoir, geostatistical tools in Petrel Software were utilized. Incorporating density log data into several coded formulations in MS Excel Software, the reservoir had its modulus of elasticity calculated. Subsequently, maximum and minimum horizontal stresses were calculated using poroelastic equations.Fault modeling results showed that, fault dip increases with increasing the depth towards the center of the field. Obtained values of stress using the poroelastic equations show that s_H>s_h>s_v, confirming a regional reverse stress regime, which is consistent with previous studies in this area. Also, the formal stress ratios (F= (s2-s3) / (s1-s3)) obtained from poroelastic equations and inverse analysis method were found to be well-correlated across the area. Finally, average azimuth of the reverse faults on the southern limb (as calculated by Petrel) and the fractures on the limb (as obtained from FMI images and core samples) were found to be N305 and N315, respectively (average=N310). Thus, N040E was inferred to be the average direction of principal stress, i.e. principal stress is mostly directed along a NE-SW axis (perpendicular to the general trend of Zagros Orogeny); this is probably a result of the activities of youngest Zagros orogeny phase. The agreement between the obtained principal stress directions by fractures, faults, and focal mechanism of earthquakes across the World Stress Map (WSM) confirms the validity of this study.