Summary Recent developments in eXtended Finite Element Method (XFEM) opened new avenues through crack propagation problems. However, in most researches, exact porosities are not considered or are just replaced with some circular pores. This means the effects of the shape, location, and arrangement of the porosities are less evaluated. In this study, by considering the porosity as an elliptical pore, parameters such as elliptical shape, relative location, and arrangement of pores are studied. The results revealed that this kind of considerations can improve the accuracy of crack growth modeling through porous media. Introduction The shape and location of a pore have a significant effect on the cracks' growth and propagation in porous media. Due to the concentration of stress around these discontinuities, tensile cracks are created and coalesced leading to the final failure in the sample. Since these kinds of tests in pore-scale are practically hard to implement in the laboratory, numerical computation of these behaviors is of great importance to correctly understand this phenomenon. In recent years, the use of XFEM, which eliminates the need for remeshing along the crack path, has been extensively developed and used by many researchers. However, due to the complex shape of the porous structure, even in numerical modeling, they either are not considered or their shape is assumed to be circular. We, in this study, will go a step forward in this limitation by assuming an elliptic shape for porosities. Methodology and Approaches In this article, the effect of shape, location, and arrangement of elliptical porosity on crack growth is numerically modeled. By placing these porosities beside and in front of the crack, the stress distribution, stress intensity factor variation, and maximum resistance of the sample are investigated. Results and Conclusions The results showed that for the equal size of pores if the vertical elliptical pore is located in front of the crack, its destructive effect is about 20% more than the horizontal elliptical pore. Also, when the porosity is located beside the crack, by increasing the angle between the horizontal axis with the direction of the large ellipse diameter (here we call it α), the stress intensity factor decreases from 1 to 0.94 and reduces the crack propagation in the porous sample. In addition, we defined the angle between the horizontal axis and the line joining the centers of the two porosities as β and evaluated the effect of the porosity shape and its location on crack growth in more complex models (i.e., models containing two elliptical porosities). By increasing the α and β from 0o to 90o, the maximum strength of the sample decreases by 18.12%, and the von Mises stress value increases from 0.154 to 0.922 MPa. However, the results revealed that the effect of β on crack growth is greater than α.