Introduction: The genus Cinnamomum (cinnamon) is one of the well-known aromatic spices throughout the world with numerous medicinal applications. Several beneficial pharmacological properties of cinnamon have been evaluated, including antioxidant, antiinflammatory, anti-diabetic, anticancer, cardiovascular-disease-lowering, and neurological disorder-improving effects. This review critically evaluates studies regarding the molecular mechanisms underlying the antioxidant and anti-inflammatory properties of cinnamon species. Methods: Using three online literature databases (PubMed, Scopus, Science Direct), we identified studies describing the antioxidant and anti-inflammatory properties of cinnamon species. A literature search was carried out using a combination of keywords such as (“Cinnamomum, ”) AND (“antioxidant” OR “anti-inflammatory”) or other related words. In this review, we evaluated new findings regarding the molecular mechanisms of antioxidant and anti-inflammatory effects of Cinnamomum species published from 2005 until December 2022. A total of 38 papers were selected to describe the antioxidant and anti-inflammatory properties of cinnamon species. Results: Cinnamon species possess antioxidant effects by reducing ROS, MDA, and NO levels, and depleting GSH, decreasing MPO activity, and enhancing the growth of SOD and CAT. Additionally, the suppression of caspase-3 and caspase-9 activity and the upregulation of bcl-2 expression determine the anti-apoptotic effects of cinnamon. Their anti-inflammatory effects are mainly related to the reduction of TNF-α, IL-1β, IL-6, IL-18, IL-10, iNOS, MCP-1, and COX-2, and the inhibition of NF-κB, ERK1/2, p38, and JNK activation. Conclusion: This review highlighted the antioxidant and anti-inflammatory effects of genus cinnamon and can provide a suitable basis for further pharmacologic surveys and efficient clinical research on cinnamon to obtain new evidence on its benefits for human health.