Microplastics (MPs) have been reported as emerging contaminants. There was little information about their effect and behavior on soil properties. This study aimed to investigate the changes in exchangeable concentrations (extracted with 1 M ammonium acetate) and water-soluble (ratio of 1 to 2.5 soil to water) of sodium (Na), potassium (K), calcium (Ca), and magnesium (Mg) elements under the presence of Low-Density Polyethylene MPs particles in the soil. The experiment was performed as a factorial experiment based on a completely randomized design with three replications. Experimental factors included the amount of MPs particles (zero, 1, 2, and 4% w/w) and incubation time (3, 17, 31, 45, 90, and 180 days). The results showed that MPs particles affected exchangeable and water-soluble elements. MPs particles reduced the exchangeable amounts of Na, K, and Ca. The largest decrease was related to the level of 4% MPs. Briefly. In the level of 4%, the amount of exchangeable Na, K, and Ca decreased by 7.2, 5.7 and 2.6 %, respectively, in comparison with control soil (without MPs). On the other hand, water-soluble K and Ca under the influence of MPs particles (4% MPs level) decreased by 6.97 and 8.4 % respectively, as compared with control. MPs particles reduced water-soluble Na in the first (3 days) to fourth (45 days) incubation periods. Also, MPs particles reduced the amount of exchangeable and water-soluble Mg, but it was not significant. In summary, the presence of MPs particles in the soil, especially in higher amounts (ex: 4%), can affect the availability of cationic elements such as Na, K, Ca, and Mg.