Archive

Year

Volume(Issue)

Issues

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
Issue Info: 
  • Year: 

    2018
  • Volume: 

    5
  • Issue: 

    1
  • Pages: 

    17-38
Measures: 
  • Citations: 

    0
  • Views: 

    362
  • Downloads: 

    0
Abstract: 

Quantitative assessment of landslide sedimentation in the ILAM dam Basin Information on the accurate volume of landslides and sedimentation in landslides is a research necessity, with the assumption that the bulk of sediment accumulated in the ILAM Dam (located between, E and, N) is related to the surface landslides of the basin. Although the role of landslides in erosion, sediment transport and sedimentation of slippery basins is confirmed and different experts understand and determine the relationship between the fluctuation of slopes and the fluctuation system in many respects more important than other areas. Because according to the results they can assess the widespread environmental changes, but comprehensive research on the scale of catchment basins has done very little (Harvey 2002). So far, the study of wet landscapes in Iran has been more sensitive to the factors, their sensitivity and their hazards, and there has been no study on the sedimentation of landslides. Data and Method First, using a geomorphologic system methodology with topographic maps of 1: 50000, geological map of 1: 100000, aerial photography1: 20000, Landsat TM1988 ETM2002, 2013 satellite imagery, and Google Earth in the GIS environment in the following sub-basins and landslide events at the following levels The basin was drawn. The discharge data of the water and sediment flow of three hydrometric stations GOLGOL, CHAVIZ and MALEKSHAHI Station were provided from the waters of the ILAM province. Two models of estimated MPSIAC and EPM models have been used to estimate soil erosion and subsoil sedimentation. The Moran spatial correlation model was used to introduce the spatial pattern of landslides, and the fuzzy logic model was used to determine the relationship between the dependent landslide to the independent variables and the potential risk of landslide hazard in the basin. In order to elucidate the quantitative results of landslide sedimentation, empirical models of estimation of sediment erosion, hydrological model of discharge curve and sediment, observational statistics of sediment during statistical period, landfall time occurrence in compliance with the hydrometric station sediment peak during the statistical period of computation Estimated a small amount of sedimentation of the landslides of the ILAM dam basin. Result and Discussion The spatial correlation model of Moran showed that the data have spatial correlation and cluster pattern. The average total sediment production in the MPSIAC model in the GOLGOL basin was estimated to be 13. 3 tons per hectare per year under the CHAVIZ basin of 10. 3 tons per hectare for one year and 4. 00 tons per hectare in the sub-basin MALEKSHAHI. Using hydrological model of discharge-sediment curve, the mean sediment was calculated during the statistical period at the hydrometric station of the sub-basin of GOLGOL 18. 8 ton per hectare, the station CHAVIZ 10. 4 tons and the station MALEKSHAHI 0. 9 tons of sediment per hectare per year was calculated. According to the results of the research methodology, the observation of the sediment in the two stations of GOLGOL and CHAVIZ compared to estimated sediment is related to the events occurring in these two sub-basins. The data of 16 active landslides were recorded. Under the GOLGOL basin, 9 landslide events occurred, and in the CHAVIZ basin, 7 landslide events, the time of landfall occurrence recorded with sedimentary peaks, the length of the statistical period, the precipitate in the sub-basins was almost synchronized. Average relationship between suspended period of the statistical period-average of the peak delayed flight time of the statistical period coinciding with the occurrence of landslide = the amount of suspended load of landfall occurrence in the basin. The amount of suspended land slip under the GOLGOL 75088. 19-315. 85=74772. 34 Landing slope under the Chavez Basin 19907. 30-20. 24=19887 The area of the sub-basin is about 29, 000 hectares and the active landslide area is about 100 hectares. According to the calculations, 77772. 34 tons of suspended sediment is a sedimentary passage passing at the GOLGOL hydrometric station, which shows with a coefficient of 1. 4 times the suspended sediment load of approximately 104681 tons of landslide sedimentation in this sub-basin, which shows the amount of sediment yield 100 hectares of landslide, so each landslide hectare had an average of 1046. 81 tons of sediment deposited at the GOLGOL hydrometric station. The area under the Chavez Basin is about 14000 hectares and the active landslide area of this sub-basin is about 65 hectares. According to the data of the discharge data, the sedimentation of the Chavez hydrometric station is 19887 tons of suspended sediment load, which shows a 1. 4 equivalent of 27842 tons of landslide sedimentation in this sub-basin, equivalent to a slope of 428. 33 tons per hectare. Conclusion According to the calculations, it is concluded that in the sub-basin of flowering GOLGOL, 37. 35% is equivalent to 4. 9 tons per hectare per year, the increase of sediment is related to landslide events. As a result, 28. 2 tons of sediment per hectare were introduced in one year Dam reaches ILAM. The results showed that in the CHAVIZ sub basin, 38. 2 percent is equivalent to 4. 6 tons per hectare per year for the increase of sediment related to landslide events. As a result, an amount of 14. 5 tons of sediment per hectare has entered ILAM dam in one year. In the sub-basin MALEKSHAHI, there was no increase in sediment during the period without active landslide occurrence. A total of 1237314 tons of landslide deposition have entered the ILAM Dam. To control this threat, the appropriate action by the executive office for sustainable development should be applied.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 362

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2018
  • Volume: 

    5
  • Issue: 

    1
  • Pages: 

    17-38
Measures: 
  • Citations: 

    1
  • Views: 

    727
  • Downloads: 

    0
Abstract: 

Spatial Analysis of Villagers’ Resilience Against Environmental Hazards (A Case Study of Central District of Faruj County) Statement of the problem The concept of resilience is the outcome of changes in risk managing in current decade. Today, the views and theories of disaster management and sustainable development seek to create societies resilient against natural disasters. Natural disasters such as earthquakes, droughts, floods, etc. are inevitable phenomenon which always pose a serious threat to development, especially in rural areas. This reflects the need to pay more attention to resilience in local level (rural areas). Resilience is the ability of a social or ecological system to absorb and deal with disorder or disturbance, so that the basic functional structure, can maintain the capacity of reorganization and adapting to changes and tensions. Carpenter defines resilience as the capacity of an environmental and social system to absorb a disruption, reorganize and thereby maintain essential functions. Thus, in order to reduce damage caused by natural disasters, the capacity of rural areas to deal with these events should be increased. Increased level of resilience against natural hazards is possible through accurately identifying the factors affecting resilience. Therefore, the aim of this study is the spatial analysis of factors affecting the promotion of rural environmental resilience in the face of natural hazards in rural areas of Faruj County. In fact, the present study seeks to answer the following questions: what are the factors which may increase the level of resilience in the sample communities exposed to natural hazards, and how resilient are the sample villages of the study? Research Methodology This study is an applied research conducted in a descriptive-analytical method based on questionnaires. Data were collected through library research and field works which required completing questionnaires and conducting interviews with villagers living in the Central District of Faruj County. Validity of the questionnaires was confirmed based on expertschr('39') views and its reliability was calculated using Cronbach alpha for different dimensions. The population consisted of 4591 households from the villages suitable for temporary accommodation. Based on the Cochran formula, 252 were obtained from these samples. They were selected by stratified random sampling. Using statistical analysis methods in SPSS software, we analyzed the data to measure resilience in sample villages of the study area. We also used Excel and GIS in various parts of the study. To determine the best option, we used the VIKOR models, Gray relational analysis and Additive Ratio Assessment (ARAS). Results and discussion The results showed that infrastructure dimension with a mean of 2. 92 and the economic dimension with a mean of 2. 58 respectively had the highest and least impact on increased resilience which suggest that these villages compared to sample villages have relatively good infrastructure facilities. However, due to the lack of proper institutional framework and poor performance of crisis management institutions, villagers are less satisfied with these organizations. Accordingly, based on t-test, the actual mean of the total respondents’ views was less than 3 and at the moderate level, and the economic index with the t statistics of-10. 38 had the most negative impact on the resilience of the villagers. It should be noted that according to the results of the resilience correlation with the individual characteristics of the respondents, it became clear that the gender and marital status has a direct and weak relationship with each dimension of resilience, which means men and the married people compared to the women and the singles believe their villages are more resilient. Besides, there is a weak and reverse relationship between the education of the individuals and their resilience, meaning that people with lower education compared to educated people, believe their villages are more resilient. There was no relationship between age and the dimensions of resilience. In order to assess the impact of each index of the study on the level of resilience in the villages of the study, the confirmatory factor analysis test was used which revealed that among the indices of the study, "the villagers’ satisfaction with the performance of the Rural Council and administers (Dehyars)", "the role of institutions in educating people about various incidents" and "the use of new and durable materials to prevent the damaging effects of the incidents" had the greatest effect on the resilience of the samples villages. Eventually, to determine the best village in terms of resilience for establishing a temporary settlement site in crisis management, we use three techniques: additive ratio assessment (ARSA),-VIKOR and Gray relational analysis. We prioritized the villages based on the mean rank method.-Considering the indices of resilience in the rural areas of the study, the villages of Mefrangah, Ostad and Pirali have the highest ranks, and the villages of Rizeh and Roshavanlou have the lowest ranks.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 727

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2018
  • Volume: 

    5
  • Issue: 

    1
  • Pages: 

    39-66
Measures: 
  • Citations: 

    1
  • Views: 

    425
  • Downloads: 

    0
Abstract: 

The analysis of dust hazard studies in southwest region of Iran in 22 years (1996-2017) Dust storms are natural hazards that mostly occur in arid and semi-arid regions and there are many harmful consequences. According to the topographic-climatic conditions in Iran and the significant increase in the number and severity of dust storms occurrence in recent decades, especially in the West and Southwest regions where the dust storms are the most important environmental crisis. Studying this phenomenon is necessary for better management its harmful effects. Since most of the research are implemented as different case studies, and there is no comprehensive study that review a wide range of existing researches with overall results in the southwestern parts of Iran, in this study a comprehensive overview of available literature reviews are addressed including dust spatio-temporal variations, modeling, detection, and health issues. This research is based on a library research and search of valid national and international scientific articles about the dust crisis and no data-processing. We attempted to analyze temporal and spatial variations in the south and southwest of the country using the available studies and the challenges of this phenomenon in the past and present to provide a new perspective to apply a comprehensive land management and managing environmental hazards in Iran with all the problems. A review of the history of dust storm studies from information sources showed that most researchers (61. 40%) used a synoptic method to study dust storms, and the most important indicators that were considered by the researchers in physical properties were frequency and density, 34. 21% and 34. 21% of the studies respectively. Dust detection methods show that the use of thermal or reflective bands cannot detect dust phenomena with high precision, therefore, a model which applies both bands simultaneously should be developed. In other words, applying a combination of reflective and thermal spectra of Military Origin Destination Information System (MODIS) could offer better results in detection of dust storms in the study area. Studies indicate that most of the storms originate outside of Iran. Moreover, exposure to airborne contaminants, especially when the dust storms occur in the Middle East, can lead to an increase in the related disease outbreak in the study area. For instance, there was a 70% increase in referring to medical centers for lung related problems when a dust phenomenon occurred. The Results showed that in cold seasons where low height and western waves is formed on the European and Mediterranean Sea, due to the heaviness, cold air in these days, can penetrate low latitudes and their trough is located over the Middle East area. Under warming condition, the front of rough is formed as ridge, then engendered turbulence and wind. In the warm seasons, thermal low pressure is rapt to ward in the high latitude, and severe dryness of the area is also due to the fact that the dusty phenomenon is intensified in the area. Dust storm occurrence in the summer due to bareness of the land, transparency of the atmosphere, dryness of the air and the vast plains, which can reduce the formation of local instability in the case of a sharp rise in air temperature. The dispersal of deserts and sand sea is mainly in the northwest of Khuzestan province, especially in Fakkeh and Moussan which are located in the western borders of Iran with Iraq, which cover most of the Azadegan plain and west of the Karkheh and Mollasani and Maroon Rivers, and ultimately end in the Omidiyeh and Aghajari regions. Results show that the border between Syria and northwest Iraq, west and southwest of Iraq to east and northeast of Saudi Arabia are the main sources of dust in the studied region. Synoptic conditions considering simultaneously with the occurrence of dust storms showed the significant role of cyclonic systems in the occurrence and transfer of this phenomenon. With the phenomenon occurrence during the warm period, the significant strengthening in low pressure of Iraq along with the trough formation in Zagros causes the formation and transfer of dust towards Southwest Iran. Simulation studies of dust particles movement paths have shown that most of the paths are from the northern and central parts of Iraq and Syria and the source of dust storms are deserts and dry regions of the northern and central parts of Iraq and Syria. In addition, the study of the transmission paths of particles in dust storms indicates the presence of a lower level jet, which causes horizontal displacement of dust particles in a shallow layer and prevents its vertical propagation in the higher layers of the atmosphere. In general, although the dust phenomenon is transnational and uncontrollable, it can introduce limitations in terms of circulation patterns and statistical properties at different time intervals to the different planners via its time and scope which will necessitate appropriate programs for combating and adaptation.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 425

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2018
  • Volume: 

    5
  • Issue: 

    1
  • Pages: 

    67-82
Measures: 
  • Citations: 

    0
  • Views: 

    788
  • Downloads: 

    0
Abstract: 

Study of vulnerability of settlements in rural areas A comparative study of salvage towns and villages in the eastern part of Golestan province There are important choices to be made after the various accidents and the numerous financial and psychological effects of rural settlements, including decisions on how to intervene in rural settlements and the adoption of reconstruction policies. This intervention is identified as four types of identification, relocation, continuous development, or integration and integration for the reconstruction of damaged or destroyed villages due to natural hazards. Many scholars and scholars believe that among the above models, aggregation and integration have economic advantages in supplying facilities and services. The rulerchr('39')s insight has led to less attention to its economic, social, physical and environmental implications. It seems that this indifference has led to the implementation and implementation of relocation and integration plans of rural settlements with the change in their vulnerability in the economic, social, physical and environmental dimensions and the development of the vulnerability of affected society Increase against future accidents. Extreme rainfall in the eastern province of Golestan province in August 2005 resulted in two devastating floods, one of the most damaging floods in the country. The Islamic Revolutionary Guard Housing Foundation has been providing housing for the affected population and in order to reduce the resettlement of villages due to the occurrence of future floods, the eleven villages in the city of Kalaleh, which had been damaged in recent floods in Golestan Province, were displaced. This research is descriptive-analytic and its data have been collected in two sections of library and field. The statistical population of this study is a collection of residents of the walled city and villagers who have returned to the villages of Chatal, Ghapan Oliya and Sofla. To test the vulnerability in two samples, independent samples t have been used. Comparison of two sample returns in villages Chatal, Gapan Oliya and Sofla with the displacement and aggregation of villages in the recreational city showed that each of the studied samples had weaknesses and strengths in different dimensions of vulnerability. The vulnerability of the Faragi city in the economic dimension, using the average for each of the three villages and the city of recreation (3. 18 and 2. 89, respectively), shows that the resettlement policy in the area of study has increased the vulnerability, especially in the outskirts of the Faragi city Is. The results of this research in the economic sector are consistent with the results of Firouznia and colleagues (2011) and Stadekelai et al. (1394). Regarding the role of resettlement in social vulnerability after examining the criteria, the average for each of the three villages and the Faragi city (3. 21 and 2. 77 respectively) shows that the resettlement policy from the social perspective in the scope of the study increases the level of vulnerability especially in the Faragi city. The results of this research in the social section are consistent with the results of Montazarian (2011), Mohammadi, Professor Kalayeh et al. (1394), Zaharan et al. (2011), Peik et al. (2014) and Navara et al. (2013). In the physical dimension of the environment, it can be said that resettlement in general has reduced the level of vulnerability and improved life indicators in the Faragi city. The average for each of the three villages and the Faragi city (2. 89 and 3. 57, respectively) shows that the resettlement policy from the physical-environmental perspective in the study area has reduced the amount of vulnerability in the outskirts of the Faragi city to the three villages. On the other hand, the zoning of physical-permafrost range shows that although the physical injuries of the outskirts of the Faragi city are lower than the three villages, but considering the location of the Pishkamarchr('39')s site in the zone with moderate damage, the physical-peripheral city of leisure also vulnerable. In most post-traumatic reconstruction programs, the policy of removing the entire or part of the settlement as a suitable technical solution to reduce the vulnerability and safety of phenomena such as floods, landslides and so on Considered. However, the review of various experiences suggests that displacement of settlements, although effective in reducing physical morbidity, is mainly due to numerous social and economic consequences. The displacement and consolidation of 11 villages of Golestan province in the post-flood Pishkamar site of 1384 were unsuccessful due to the lack of planning and designing, with macroeconomic and social costs, in reducing the dimensions of vulnerability of a settlement, including social and economic. This has led to the return of villagers to their old villages. The quantitative results of this research also confirm the hypothesis that increasing the migration to cities, returning to old villages, ethnic conflicts, reducing production levels, increasing bank debt and the prevalence of insecurity in the outskirts of the Faragi city are one of the most important factors in increasing the vulnerability in the social and economic dimensions of the study area. The investigations indicate an increase in the amount of vulnerability in recreational areas in terms of economic and social dimensions and reducing its physical-environmental vulnerability to three villages. Since reducing the vulnerability of settlements is subject to control and reduction of damage and damage in all aspects, it seems that the reconstruction of rural settlements after the flood of 2005 in Golestan province has been effective in increasing the vulnerability of this area.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 788

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2018
  • Volume: 

    5
  • Issue: 

    1
  • Pages: 

    83-96
Measures: 
  • Citations: 

    0
  • Views: 

    455
  • Downloads: 

    0
Abstract: 

Investigation about the influence of land-cover and land use changes on soil erodibility potential, case study: Gharesou, Gorganrood Land use and land cover (LUC) change associated with climatic and geomorphologic conditions of the area have an accelerating impact on the land degradation. Natural as well as human-induced land use land cover change (LUCC) has significant impacts on regional soil degradation, including soil erosion, soil acidification, nutrient leaching, and organic matter depletion. Since the last century, soil erosion accelerated by human activities has become a serious environmental problem. It has a manifold environmental impact by negatively affecting water supply, reservoir storage capacity, agricultural productivity, and freshwater ecology of the region. In recent years, many researchers have highlighted the environmental consequences of soil erosion. Soil erosion estimation at a regional scale is influenced by the complexity of the soil erosion process and the availability of data describing the soil erosion factors. In the last decade, regional and national level assessments of soil erosion were carried out using different approaches, ranging from indicator or factor-based approaches to process-based models. However, the revised universal soil loss (RUSLE) and its modifications are still widely used because of its simplicity and a greater availability of input parameters. Gharesou basin is one of the sub-basins of Gharesou, it suffered from severe erosion in some areas over the past years. This erosion has occurred for different reasons and one of them is land use change and weak management of water and soil resources. The purpose of this research is to investigate the effects of land-cover changes on the potential of soil erosion in Gharesou Basin, a sub-basin of Gorganrood, in Golestan province. For this, we have employed RUSLE Model and used landsat satellite images from the sensors of TM, ETM, and OLI for 1985, 2000, and 2015. The potential soil erosion in this study was estimated using RUSLE model, which can be described using following equation: A = R × K × LS × C × P where A is amount of soil erosion calculated in tons per hectare per year, R is rainfall factor, K is soil erodibility factor, L is slope length factor, S is slope steepness factor, C is cover and management factor, and P is erosion control practice factor. To run the RUSLE model in GIS, first, rainfall raster layer, soil, slope, Digital Elevation Model, and also layers of soil protection range were created. Each of the involved factors was calculated in separate units in the basin level. In this research, Gharesou basin was analyzed based on raster network data with 30 meters cell size, because, from one hand itchr('39')s small enough to show heterogeneity of the basin and on the other hand, it matches pixel dimensions of landsat satellite images. The results of land-cover changes have revealed a decrease in dense forest areas, low forest areas and the mixture of orchard, forest and pastures in a thirty years period. According to the results of RUSLE, changes of the classes indicate a general trend to the soil loss in the basin. Therefore, Gharesou basin is a basin with increasing soil erosion potential. In the plain and coastal plain areas of the basin, that is the mainly cultivated area, the amount of erosion is different from the other areas, and soil loss process is decreasing. Itchr('39')s due to the changes of cultivation method from traditional to modern, increase of irrigated farming area, choosing more environmentally friendly plants, and also, increase in the area of cities and villages from 7. 14 percent to 29. 04 percent during 30 years. In the study classes, for output of RUSLE model, in every 3 years of study, the maximum area relates to the classes of 100 to 200 Ton per year that is more seen in the mountainous regions. In these regions, all factors except vegetation are toward soil loss. Also, during 30 years, the amount of dense vegetation decreased from 34. 56 to 31. 55. In fact the only factor in protecting soil in (prone to erosion) areas has given its place to less effective vegetation, so, the area of this region has increased and Gharesou basin is in danger of soil loss in mountainous and forest parts. Also, areas with more than 200 Ton in hectare, with the lowest amount, have had a tangible increase during 30 year of study and its amount has increased from 11. 74 to 12. 50. These areas are usually located in mountainous parts with no vegetation. Also, the average of soil erosion potential estimated in Gharesou basin for 1985, 2000 and 2015 is 102. 02, 103. 11, and 103. 76 (ton per hectare per year). This amount was found in the sub-basins too and except the sub-basin 4 located in coastal plain areas of the basin, with farming use, the amount of other sub-basins is increasing. According to the results of study, mountainous parts of Gharesou basin, has the most damage due to the accumulation of involved factors in the potential increase of soil loss. So, the necessity of watershed management is observed. Also modification of cultivation pattern and soil conservation training in farming lands of foothills and hillsides are required.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 455

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2018
  • Volume: 

    5
  • Issue: 

    1
  • Pages: 

    97-112
Measures: 
  • Citations: 

    0
  • Views: 

    399
  • Downloads: 

    0
Abstract: 

The occurrence of any climatic fringes, including annual tropical storms, leave irreparable risks in its dominated areas. Understanding these events and knowledge of the time of their occurrence can be helpful in managing the unexpected incidents caused by them. Tropical cyclones are important natural turbulent processes in tropical and middle ecosystems in a number of regions of the world. Among the dynamic conditions of the atmosphere for the formation of tropical storms, there are three basic conditions: 1. The vertical wind shear should be limited between the 850 to 200 mb and the wind speed between these levels should be less than 10 meters per second. Such a situation allows the formation of a straight column, without breaking, to initiate tropical storms. 2-The formation state of tropical storms should be such that at least it is five degrees of latitude distant from the equator. Such conditions provide the minimum of Coriolis force to provide the tropical cyclic rotation along with other fundamental and apparent forces of the atmosphere and they occur following the pressure forces, Coriolis and centrifugal forces, cyclostrophic winds, and cyclic circulation in the center of the low pressure. 3-The presence of turbulence or discordance with vorticity and the convergence in the lower troposphere, or the anticyclone rotation and divergence in the upper levels of the atmosphere before the onset of activity, and the formation of tidal disturbances. Tropical storms are created by the presence of various dynamic and thermodynamic factors such as sea surface temperature and moisture content (thermodynamic properties), and flow and vertical winding functions (dynamic characteristics). The parameters studied in this study for the dynamic and thermodynamic analysis of the tropical rotation of 1948 generally included the mean sea level pressure, geopotential heights, zonal and meridional components of wind, convection available potential energy, convective stabilization index, vertical velocity, relative vorticity, Sea surface temperature, humidity, and cloud cover levels which are drawn from the European Center for Medium Forecast Scale (ECMWF) with spatial resolution of 0. 75 applying GRADS software. The study of combinational maps of 500 milligrams of geopotential heights and vorticity advection on the first day of the cyclone (1948/06/05) indicates the presence of a very strong low-altitude center with seven closed curves on the Arabian Sea. The most inner curve of this low-altitude center has the lowest elevation with 5650 geopotential meters height and the maximum vorticity advection and downright negative velocity of 10 and 0. 5 Pascal to seconds, respectively. The above-mentioned Jetstream map with a maximum speed of 16 m / s, which covers the east of the center of the altitude, contributes to the greater divergence of this system. The formation of a very strong negative eddy in the 500-mb equilibrium also indicates intense instability at the site of the tropical cyclone and is actually a factor in the formation and reinforcement of such cyclones. The above-mentioned low altitude continues its cyclonic rotation at the level of 850 mb with two closed curves, and the maximum vorticity advection and downright negative velocity of 16 and 0. 6 Pascal to second, respectively, due to the presence of lower level radar with a maximum speed of 20 m / s on the south side and similarly, in the south-east, it continued to circulate more rapidly at a rate higher than 500 mb, which results in the formation of the first pressure packet with a central pressure of 997. 5 mb on the sea surface. The high amount of specific humidity of 850 mb from the start of cyclone activity (12 g / kg), and the increase in this parameter in the next days of activity reaches 14 g / kg and also 4. 5 g / kg at 500 millimeter equilibrium point to the high humidity at the location of the low-pressure center and the optimum conditions for the extraction of heavy rainfall in the eye wall of cyclone. Cloud cover maps also indicate a climber air density of up to 500 mb and the formation of a cloud at different levels of the atmosphere at the site of the formation of tropical rotation. The results show that the formation of the lower Jetstream, along with the tropical cyclone event (from 05 to 08 of 1948) affecting the southern coast of Iran, has been able to create severe air mass divergences in the left half of the nucleus and following this mechanism and the relationship between this velocity nucleus and the lower levels of the atmosphere and the sea level in the vertical direction, with the convergence of the mass, has been accompanied with the reduction of density and, finally, the reduction of pressure and the formation of turbulence, as the first ring for the development of tropical cyclones; therefore, the altitude of 850 mb and jet stream located at this elevation affected by the high-rise phenomenon on the western shores of the ocean (sometimes in the east of Madagascar) is considered as one of the most effective dynamic factors for the birth and development of this tropical cyclone on the southern coast of Iran. The tropical cyclone was formed from June 5 to June 8, 1948, at approximately 16 degrees north and 60 degrees east on the Arabian Sea. And, in general, the interaction between high pressure tongues on Saudi Arabia, Tibet and Iran, and the tropical cyclones has prepared the conditions for the activity and displacement of the tropical rotation. Previous studies of tropical storms have considered other synthetic systems, such as cyclones over Europe, and the integration of cyclones on the Mediterranean and Oman, as well as the displacement of the axis of tropical cyclones at middle and upper levels of the atmosphere affective in the escalation and displacement of the storm. It is also believed that the southern coast of Iran is also effective, and in general, less attention is paid to the causes of the development of the storm.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 399

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2018
  • Volume: 

    5
  • Issue: 

    1
  • Pages: 

    113-126
Measures: 
  • Citations: 

    0
  • Views: 

    449
  • Downloads: 

    0
Abstract: 

The role of tropospheric vertical anomalies in rainfall solid Case study: the hazard of hail in Kermanshah Climate risks is one of the Types of hazards that damages human communities such as the phenomenon of hail, in the micro-scale, it causes financial losses and casualties. Hail is associated to the atmospheric elements and geo-location factors. Whenever weather conditions and appropriate physical processes are combined with geo-location creates and intensifies this phenomenon. Losses resulted from hail has been more effective in the agricultural sector and in the effect of damaging the crops When growth and budding. However, it disorders in other sectors such as, blemishing residential buildings, Losing large and small animals also, damaging to the aircraft flight and its components. Hail considerable damage in Kermanshah province every year so that Farmers insure their crops against this Phenomenon and the government will incur heavy costs for damage that is inflicted on the sector of activity. Research methodology The current weather data has been used with 3-hour intervals in the statistical period of 65 years (1951 to 2016) from synoptic stations of Kermanshah Province that includes the stations of Kermanshah, West Islamabad, Ravansar, Kangavar, West Gilan, and Sar-e-Pole-Zahab. Among the 100 present weather code, Codes 99, 96, 91, 90, 89, 87 and 27 have been considered that including hail phenomenon by varying intensities and includes any appearance of this phenomenon in Hours scout and three hours earlier. Then, based on the above code, Were coded in Excel to identifies Codes 96, 91, 90, 89, 87 and 27 When entering from the Meteorological Data To the desired program among Group VII of the data, And when the written code, were identified, Hail days were marked. Given that in this study Hail is studied regarding the synoptic conditions and temperature anomalies. Therefore, for the synoptic situation, Pressure data, vorticity, Special moisture, Components U and V, Omega transverse profile And outgoing longwave radiation, And for the temperature anomaly, Temperature and isothermal anomalies components Were getting from esrl. noaa. gov/psd site And using the software Grads were drawn maps for a selected day To determine the formation of hail. Commentaries Results The frequency of occurrence of hail has reached 187 in the period 65 years in Kermanshah province. This phenomenon generally occurs from mid-September to mid-June. The most number has been in Kermanshah station and the Least in Sar-Pol-Zahab station. April has had the highest number of hail frequencies in Kermanshah province and the greatest losses in the month related to the agricultural sector. Therefore, Select System hail seems essential to examine how the temperature anomalies and the formation of hail in the month. On the day of the event, trough hail has been formed in the East Mediterranean. Wrying the trough axis From North East to South West resulted in cold air from high latitudes to the East of the Mediterranean. The establishment of trough in the middle and low pressure level in sea level and its following Convergence in the balance has created positive omega until balance of 200 hPa and most serious it is at the level of 400 hPa. Negative omega has maintained its association from ground surface until High levels in the study area. The airflow of vorticity balance 1000 and 500 Hpa Suggests vorticity positive settlement area on the case study. Establishment of short wave in the vicinity of the study area and intensifying ascending conditions also Prolong Positive trough conditions from surface of Earth until 500hpa balance have been The necessary dynamic conditions for Hail in this day. Special moisture and wind Vector with 700hpa balance of Moisture transfer has been done by two opposite vorticity system. Trough rotary motion Based on the Mediterranean and along the Red Sea on the one hand and Moving anticyclone over the Arabian Sea And the Persian Gulf and Oman Sea on the other, have conveyed Moisture of all moisture sources from The seas around to The study area. Also OLR anomalies for the hail event day indicates being Negative in the study area and the sharp decline of Outgoing longwave in this day Compared to its long-term average And hence the conditions of cloudiness and the formation and intensification of convection has been provided. 1000 hpa positive anomaly 2 ° is representative the Higher than the average temperature conditions and in the 500hpa anomaly balance Minus 2 degrees Celsius is representative Lower than normal temperatures in the balance. These factors aggravate the vertical temperature gradient in the study area these days. 20+ degrees Celsius the Isothermal curve and-20 ° C. Respectively, the levels of 1000 and 500 Drawn to the area of study And has created a large temperature difference Between the upper and lower levels.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 449

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button