مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

73
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Hybrid Recommender System Based on Variance Item Rating

Pages

  147-162

Abstract

K-Nearest Neighbors (KNN) based Recommender Systems (KRS) are among the most successful recent available Recommender Systems. These methods involve in predicting the Rating of an item based on the mean of Ratings given to similar items, with the similarity defined by considering the mean Rating given to each item as its feature. This paper presents a KRS developed by combining the following approaches: (a) Using the mean and Variance of item Ratings as item features to find similar items in an item-wise KRS (IKRS), (b) Using the mean and Variance of user Ratings as user features to find similar users with a user-wise KRS (UKRS), (c) Using the weighted mean to integrate the Ratings of neighboring users/items, (d) Using ensemble learning. Three proposed methods EVMBR, EWVMBR and EWVMBR-G are presented in this paper. All three methods are user-based, in which VM distance is used as a measure of the difference between users / items, to find neighboring users / items, and then the weighted average is weighted, respectively. Also, weights based on the Gaussian combined coVariance model are used to predict unknown user Ratings. Our empirical evaluations show that the proposed method EVMBR, EWVMBR and EWVMBR-G, which utilizes ensemble learning, are the most accurate among the methods evaluated. Depending on the dataset, the proposed method EWVMBR-G managed to achieve 20 to 30 percent lower mean absolute error than the original MBR. In terms of runtime, the proposed methods are comparable to the MBR and much faster than the slope-one method and the cosine-or Pearson-based KNN recommenders.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button