مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

407
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

58
Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM

Pages

  41-54

Abstract

 Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, TEXTURE or color. Brain TUMOR CLASS.fication is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of brain tumors, such as primary gliomas from metastases, and also for grading of gliomas. Manual classification results look better because it in-volves human intelligence but the disadvantage is that the results may differ from one person to another person and takes long time. MRI image based automatic diagnosis method is used for early diagnosis and treatment of brain tumors. In this article, fully automatic, multi class brain TUMOR CLASS.fication approach using hybrid structure descriptor and Fuzzy logic based Pair of RBF kernel support vector machine is developed. The method was applied to a population of 102 brain tumors histologically diagnosed as Meningioma (115), Metastasis (120), Gliomas grade II (65) and Gliomas grade II (70). Classification accuracy of proposed system in class 1 (Meningioma) type tumor is 98.6%, class 2 (Metastasis) is 99.29%, class 3 (Gliomas grade II) is 97.87% and class 4 (Gliomas grade III) is 98.6%.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    JAYACHANDRAN, A., & DHANASEKARAN, R.. (1396). دسته بندی تومور مغزی چند کلاسه بر اساس تصاویر ام.آر.آی با بکار بردن توصیف گر ساختاری مرکب و منطق فازی بر اساس RBF هسته SVM. مجله سیستم های فازی ایران, 14(3 ), 41-54. SID. https://sid.ir/paper/113356/en

    Vancouver: Copy

    JAYACHANDRAN A., DHANASEKARAN R.. دسته بندی تومور مغزی چند کلاسه بر اساس تصاویر ام.آر.آی با بکار بردن توصیف گر ساختاری مرکب و منطق فازی بر اساس RBF هسته SVM. مجله سیستم های فازی ایران[Internet]. 1396;14(3 ):41-54. Available from: https://sid.ir/paper/113356/en

    IEEE: Copy

    A. JAYACHANDRAN, and R. DHANASEKARAN, “دسته بندی تومور مغزی چند کلاسه بر اساس تصاویر ام.آر.آی با بکار بردن توصیف گر ساختاری مرکب و منطق فازی بر اساس RBF هسته SVM,” مجله سیستم های فازی ایران, vol. 14, no. 3 , pp. 41–54, 1396, [Online]. Available: https://sid.ir/paper/113356/en

    Related Journal Papers

    Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top