مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

38
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

21
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Electrochemical Investigation and Voltammetric Determination of Hydrazine Based on Organic Modifier and N-Doped Reduced Graphene Aerogel/ Molybdenum Oxide Nanorods Multilayer Nanocomposite Modified Glassy Carbon Electrode

Pages

  78-87

Abstract

 In this research, a novel modified glassy carbon electrode (GCE) was successfully fabricated with a tri-component nanocomposite consisting of 5-(3,4-dihydroxyphenyl)8,8-dimethyl-2-(methyl thio)-7,8,9,10-tetrahydropyrimido [4,5-b]quinolone-4,6(3H,5H)-dione (PQ23) and Nitrogen-doped reduced graphene oxide aerogel/molybdenum oxide nanorods (PQ23/N-doped-rGO/MoO2 /GCE) as sensing platform toward Hydrazine (HDZ). The nanocomposite is characterized by MAP analysis, X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). Through electrochemical investigations, the electron transfer coefficient between PQ23 and the N-doped-rGO/MoO2 /GCE (glassy carbon electrode which was modified with reduce graphene oxide decorated by molybdenum oxide nanorods) and the apparent charge transfer rate constant, ks, and diffusion coefficient (D) were calculated. Electrochemical behavior and electrocatalytic activity of the nanocomposite modified GCE were studied by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV). Under the optimum experimental condition, the designed sensor exhibited high sensitivity and suitable selectivity for Hydrazine oxidation, enabling the detection of Hydrazine with a linear range of 25.0-1000.0 µM and a good detection limit (3σ) was 4.2 µM. The designed electrochemical sensor shows good repeatability, reproducibility, and acceptable stability with an RSD less than 3.2%.

Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button