مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

19
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

5
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Integrating Second Order Sliding Mode Control and Anomaly Detection Using Auto-Encoder for Enhanced Safety and Reliability of Quadrotor UAVs

Pages

  107-116

Keywords

second-order sliding mode control (2-SMC) 

Abstract

 This paper presents a comprehensive framework for enhancing the safety and reliability of Quadrotor UAVs by integrating second-order sliding mode control (2-SMC) and an advanced Anomaly Detection and prediction system based on Machine Learning and AI. The paper addresses the challenges of designing controllers for quadrotors by proposing a novel sliding manifold approach divided into two subsystems for accurate position and attitude tracking. The paper also provides a detailed analysis of the nonlinear coefficients of the sliding manifold using Hurwitz stability analysis. It demonstrates the effectiveness of the proposed method through extensive simulation results. To further assess the safety and reliability of the quadrotor, an Anomaly Detection and prediction system is integrated with the position and attitude tracking control. The system utilizes Machine Learning and AI techniques to identify and predict abnormal behaviours or faults in real time, enabling the quadrotor to quickly and effectively respond to critical situations. The proposed framework provides a promising approach for designing robust and safe controllers for Quadrotor UAVs. It demonstrates the potential of advanced Machine Learning and AI techniques for enhancing the safety and reliability of autonomous systems.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button