مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Seminar Paper

Paper Information

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

26
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Seminar Paper

Title

Detecting Hallucinations Generated by Large Language Models Using Paraphrasing Technique

Pages

  -

Abstract

 Hallucination in Large Language Models refers to outputs that appear correct but contradict reality or diverge from the source. Detecting hallucination in Large Language Models is crucial to prevent the dissemination of these hallucinations in applications directly or indirectly related to such models. In this study, we have employed a simple algorithm to detect hallucination in a large language model. Our hypothesis is based on the hypothesis that if a large language model responds to the paraphrases of a question and an inconsistency is discovered among its answers, then we say that it is hallucination, and if the answers are consistent, it likely provides a correct answer. We have checked and confirmed these two hypotheses with experiments. In this way, our proposed method to discover the hallucination in answering a question is to create different paraphrases of that question and check the existence of inconsistencies or contradictions in the answers given to the generated questions. The presence or absence of inconsistency confirms the presence or absence of hallucinations. Experiments show that this method is able to detect hallucination in answering questions with high accuracy.

Cites

  • No record.
  • References

  • No record.
  • Cite

    APA: Copy

    Zare, Tara, & SHAMSFARD, MEHRNOUSH. (2024). Detecting Hallucinations Generated by Large Language Models Using Paraphrasing Technique. INTERNATIONAL CONFERENCE ON WEB RESEARCH. SID. https://sid.ir/paper/1147671/en

    Vancouver: Copy

    Zare Tara, SHAMSFARD MEHRNOUSH. Detecting Hallucinations Generated by Large Language Models Using Paraphrasing Technique. 2024. Available from: https://sid.ir/paper/1147671/en

    IEEE: Copy

    Tara Zare, and MEHRNOUSH SHAMSFARD, “Detecting Hallucinations Generated by Large Language Models Using Paraphrasing Technique,” presented at the INTERNATIONAL CONFERENCE ON WEB RESEARCH. 2024, [Online]. Available: https://sid.ir/paper/1147671/en

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
    مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
    مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
    مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
    مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
    مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
    مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
    File Not Exists.
    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button