مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

60
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

25
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Development of an intelligent machine vision system for the purpose of online quality measurement of rice paddy

Pages

  335-357

Abstract

 The common methods that are usually used to identify the devoid rough rice from the healthy ones are often time-consuming and expensive. For this reason, in this research, a smart and fast method based on machine vision system coupled with Artificial neural networks is presented in order to predict the percentage of devoid/healthy rough rice grains. Digital images of five varieties of paddy were prepared in three states: healthy, devoid, and mixed, in two states scattered and piled. After pre-processing and segmentation, 3 color features and 5 morphological features were extracted for each rice grain. Principal component analysis (PCA) method was then used in order to identify the most effective features in distinguishing devoid rough from healthy rice. In the next step, multilayer perceptron (MLP) algorithm based on the main components obtained by PCA method was used to create models for identifying and classifying the samples. Root Mean Square Error (RMSE), correlation coefficient (R2), specificity and sensitivity were used to evaluate the modeling capability and validation of each algorithm. The obtained results showed that the designed intelligent method can identify devoid rough rice seeds with acceptable accuracy in all cultivars (R2P>0.81, RMSEp<0.219, Sensitivity>0.8 & Specificity>0.98). Therefore, the machine vision system in combination with Artificial neural networks can be used as an intelligent and fast method at the entrance of rice bleaching factories to evaluate the quality of harvested rough rice and predict the percentage of unhealthy rough rice.

Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button