مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

21
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

34
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Data Mining and SVM Based Fault Diagnostic Analysis in Modern Power System Using Time and Frequency Series Parameters Calculated From Full-Cycle Moving Window

Pages

  206-214

Abstract

 This paper proposes a complete diagnostic analysis of faults in a typical modern power system's Transmission Line using the support vector machine (SVM) with time-series parameters and frequency series parameters as features. The training and testing data of the proposed method are collected by simulating all types of faults with all possible variations on a Transmission Line (TL) in the IEEE-9 bus system using the PSCAD/EMTDC software. While simulating one type of fault, fault resistances and fault inception angles are also varied to account for the various behaviours of the fault. The three-phase instantaneous currents and voltages on both sides of TL are recorded at 32 samples per cycle. A thirty-two sample moving window is used to compute time-series and frequency-series parameters applied as features to the SVM. Ten-fold cross-validation is used to evaluate the performance of the proposed algorithm with evaluation metrics such as accuracy, precision, recall and F1 score. Features generation, training and testing of the proposed method, and performance comparison are done using PYTHON software. The proposed method has achieved an average accuracy of 99.996%, even in the most contaminated environment of 30 dB noise. Compared with the performance of the other popular Machine Learning algorithms, the proposed method has achieved more accuracy. The performance of the proposed method is also tested with different noise levels, which account for the measurement errors of 30 dB, 35 dB and 40 dB.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button