مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

37
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

1
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Rock Mass Classification Techniques and Parameters: a Review

Pages

  155-178

Abstract

 The Rock mass classification system is utilized to categorize rocks, and has been used in engineering projects and stability investigations. It focuses on the parameters of rock mass and engineering applications, which include tunnels, slopes, foundations, etc. Rock mass classification is valuable in the areas where the collection of samples and yielding of observation is difficult. With the advancement in technology, various machine-based model algorithms have been used, i.e., ANN and MLR in Rock mass classification from prior few years. In the present work, the Rock mass classification has been discussed, i.e., rock load, stand up time, RQD, RMR, Q, GSI, SMR, and RMi along with their applications. Considering all the parameters, it is concluded that for Slope Stability in a poor rock condition, the applicability of GSI is sufficient when compared with RMR. GSI also provides a highly accurate valuation of geo-mechanical properties, making it a valuable tool for the engineers and geologists. Also, the RMR values obtained from the ANN model provide better results for tunnels when compared with MLR and the conventional method. The ARMR classification of Slate, Shale, Quartz Schist, Gneiss, and Calcschist at 5 different locations of the world were 51-54, 66-70, 57-60, 35, 65-70, respectively.  The range for slate and shale was found to be moderately anisotropic, while quartz schist, gneiss, and calcschist were found to be slightly anisotropic and highly anisotropic.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button