مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Verion

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

54
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

19
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Study the absorption process of cadmium ions by Fe3O4/L-methionine/graphene oxide and graphene Aerogel nanocomposites from aqueous environments

Pages

  303-322

Abstract

 In this research, the synthesis of L/Fe3O4-methionine and Graphene Oxide and graphene aerogel nanocomposites (Fe3O4/L-Met/GO, Fe3O4/L-Met, Fe3O4/L-Met/GA) was carried out. Then the structure of the synthesized nanocomposites was confirmed by FT-IR, FE-SEM and BET analyses. Then, the effect of different experimental parameters such as initial pH and contact time on the process of cadmium surface adsorption were investigated. The results showed that the highest percentage of cadmium absorption (90%) occurred at Ph=6 by Fe3O4/L-Met/GA nano adsorbent. Therefore, the cadmium (Cd2+) absorption capacity by Fe3O4/L-Met/GA nanocomposite (212.31 mg/g) is higher than the cadmium (Cd2+) absorption capacity by Fe3O4/L-Met nanocomposites (201.23 mg/g). ) Obtained. Adsorption kinetics data showed excellent fit with pseudo-second-order models (R2>0.99) and Freundlich isotherm models.showed high adsorption capacity towards Cd2+ (212.31 mg/g), which was significantly higher than Fe3O4/L-Met (201.23 mg/g). Finally, adsorption kinetics, isotherm studies were investigated. Absorption data showed excellent fit with quasi-second order models (R2> 0.99) and Freundlich isotherm models.

Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button