مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

نسخه انگلیسی

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید:

115
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

دانلود:

15
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

استناد:

اطلاعات مقاله نشریه

عنوان

بهینه سازی الگوریتم KNN در راستای تشخیص بیماری های انسدادی ریوی

صفحات

 صفحه شروع 238 | صفحه پایان 259

چکیده

 1مقدمه: به گزارش سازمان بهداشت جهانی, بیماری های ریوی سومین علت مرگ و میر در جهان می باشند. این بیماری ها ماهیت مزمن داشته, بنابراین تشخیص زودهنگام اهمیت بالایی دارد. تست های عملکردی ریوی ابزار مهمی در بررسی و پایش بیماران مبتلا به آسیب های تنفسی می باشند. هدف از این پژوهش بهینه سازی الگوریتم پایه K نزدیک ترین همسایه می باشد که با دقت بالاتری خودارزیابی و تفسیر نتایج تست اسپیرومتری را تسهیل و تسریع می کند. روش: در این پژوهش کاربردی روشی پیشنهاد شده است که محدودیت­ های الگوریتم پایه را با بهینه­ سازی, ارزش­گذاری ویژگی­ ها و رأی­ گیری وزن دار بهبود بخشیده و با به کارگیری آن بیماری­ های انسدادی ریوی را بر اساس مجموعه داده تشکیل یافته از تست­ های تنفس­ سنجی و پارامترهای عمومی, در سه دسته آسم, برونشیت مزمن و آمفیزم کلاس ­بندی کرده است. نتایج: در تعیین روش مناسب برای محاسبه فاصله داده ­ها, روش مینوکوفسکی انتخاب شد و با اعمال ضرایب ارزش ویژگی ­ها در این رابطه دقت کلاس بندی افزایش یافت. رأی ­گیری وزن دار در قسمت نهایی الگوریتم بر اساس کرنل گوسی صورت گرفت که بر این اساس عملکرد ثابتی به ازای تغییر پارامتر تعداد همسایگان به دست آمد. نتایج ارزیابی­ ها در قالب اعتبارسنجی متقابل انجام شد که دقت 95/4 درصد و 93/2 درصد صحت در زمان 3/12 ثانیه به دست آمد. نتیجه گیری: بکارگیری الگوریتم­ های یادگیری ماشین می­تواند در تجزیه و تحلیل داده­ های پزشکی مؤثر واقع گردد؛ لذا در این مطالعه از این رویکردها برای ارائه روشی جدید در کلاس­بندی, کمک گرفته شد, به طوری که الگوریتم پیشنهادی توانست روش پایه را بهبود ببخشد و همچنین دقت و عملکرد بهتری نسبت به روش ­های پیشین, داشته باشد.

چندرسانه ای

  • ثبت نشده است.
  • استنادها

  • ثبت نشده است.
  • ارجاعات

    استناددهی

    مقالات مرتبط نشریه ای

  • ثبت نشده است.
  • مقالات مرتبط همایشی

  • ثبت نشده است.
  • طرح های مرتبط

  • ثبت نشده است.
  • کارگاه های پیشنهادی






    بازگشت به بالا
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button