مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

10
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Laminar Viscous Flow of Micropolar Fluid through Non-Darcy Porous Medium Undergoing Uniform Suction or Injection

Pages

  157-164

Abstract

 In this study, the Micropolar fluid flow conveyed through suction or injection in a non-Darcy porous medium with high mass transfer is considered. The Micropolar fluid flow is described by coupled systems of higher order, ordinary, nonlinear differential equations. Therefore the Variation of parameters method is utilized in generating analytical solutions to the mathematical models arising from flow and rotation of the Micropolar fluid. As the Variation of parameters method is a relatively easy, yet efficient approach of analyzing both strongly and weakly dependent nonlinear equations with a rapid convergence rate. Pertinent rheological fluid parameter effects such as non-Darcy parameter and Reynolds number on flow and rotation are examined using the obtained analytical solutions. Observations from graphical representation of result illustrate flow increase during injection and slight radial velocity decrease for suction flow. Reynolds parameter effect on fluid particles micro rotation also shows decrease in rotation profile during injection while during suction increased particle rotation is observed as a result of high mass transfer. Results obtained from study compared against existing works in literature prove to be in satisfactory agreement. Therefore this paper can be used to further study of Micropolar fluids applications such as blood flow, lubricants and micro channel flows amongst others.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button