مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

video

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

sound

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Persian Version

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View:

13
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Download:

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

Cites:

Information Journal Paper

Title

Effects of sintering temperature on densification, microstructure and micro-hardness of intermetallic Ti-Cu alloy prepared by mechanical alloying and microwave-assisted sintering method

Pages

  17-22

Abstract

 Microwave Sintering has emerged as a promising technique for the fabrication of Ti-based alloys, offering unique advantages over conventional Sintering methods. The selective and volumetric heating capabilities of microwaves can result in rapid Densification, microstructural refinement, and enhanced properties in Ti-Cu alloy systems. Therefore, this study aimed to synthesize an intermetallic alloy of Ti-50 at. % Cu through high-energy mechanical milling and a microwave-assisted Sintering method. The objective was to expedite the Sintering process of the Ti-Cu alloy using microwave assistance and analyze how this method influences the phases formed and the properties of the alloy. A Ti-50 at. % Cu powder mixture was milled for 30 hours under an argon atmosphere, then uniaxially compacted to form green samples, which were subsequently sintered by microwave heating. This method allowed for rapid consolidation without significant grain growth within a short Sintering period. The effects of the Sintering method and temperature on microstructure and mechanical properties were studied. The density of the sintered samples increased with rising temperatures, with the highest density of 6.54 g/cm³ obtained at 900°C. Microstructural examination revealed that the Ti3Cu4 and TiCu phases primarily formed, with an average grain size of approximately 28 nm. A high micro-hardness of ~880 HV was achieved for the dense alloy prepared using this method.

Multimedia

  • No record.
  • Cites

  • No record.
  • References

  • No record.
  • Cite

    Related Journal Papers

  • No record.
  • Related Seminar Papers

  • No record.
  • Related Plans

  • No record.
  • Recommended Workshops






    Move to top
    telegram sharing button
    whatsapp sharing button
    linkedin sharing button
    twitter sharing button
    email sharing button
    email sharing button
    email sharing button
    sharethis sharing button